Tahoe-LAFS Documentation
Release 1.x

The Tahoe-LAFS Developers

Mar 04, 2021

CONTENTS

Welcome to Tahoe-LAFS! 3
1.1 ~ Whatis Tahoe-LAFS? e e e 3
1.2 What is “provider-independent security”™? L 3
1.3 Access Control L e e e e e e 4
1.4 GetStarted e e 4
1.5 LICENSE v i e e e e e e e e e 5
Installing Tahoe-LAFS 7
2.1 First: InCase Of Trouble e e 7
2.2 Pre-Packaged Versions L e e e e e e e 7
2.3 Preliminaries o . e e e e e e e e e e e e e e e 7
2.4 Install the Latest Tahoe-LAFS Release 9
2.5 Runningthe tahoeexecutable 10
2.6 Runningthe Self-Tests o i e e e e e e e e 11
2.7 CommonProblems e e 11
2.8 Using Tahoe-LAFS o . e 12
How To Run Tahoe-LAFS 13
3.1 IntroducCtion e e e e e e e e e e e e 13
3.2 Do Stuff With It o e e e e e 15
3.3 Socialize e e e e e e e 16
34 Complain oL e e 16
Magic Wormbhole Invites 17
4.1 MagicWormhole L e e e 17
42 Invitesand JOINS L L e e e e e e e e 17
4.3 Tahoe-LAFS Secret Exchange e e e 17
Configuring a Tahoe-LAFS node 19
5.0 NodeTyPes . . o o v v vt e e e e e e 20
5.2 Overall Node Configuration v v i i i it it e e e e e e e e 20
5.3 Connection Management v vttt e e e e e e e e e e e e e e e e e e 24
5.4 Client Configuration 0 i i it e e e e e e e e e e e 27
5.5 Frontend Configuration e e e e e e e e 28
5.6 Storage Server Configuration e e 29
5.7 Storage Server Plugin Configuration i e e e 30
5.8 Running AHelper e e e e 30
5.9 Running AnlIntroducer L e e e e 31
5.10 Other Filesin BASEDIR e 31
5.11 Additional Introducer Definitions 32

5.12 Static Server Definitions e e e e e e e e e e

513 Otherfiles
S5.14 Exampleo e e e e e e e e e e e e
5.15 Old Configuration Files e
Tahoe-LAFS Architecture

6.1 OVEIVIEW L oo e e e
6.2 The Key-Value Store L o L e e e e e e
6.3 FileEncoding. L e
6.4 Capabilities e e e e e e e e e e e e e
6.5 Server Selection e
6.6 Swarming Download, Trickling Upload
6.7 TheFile Store Layer e
6.8 Leases, Refreshing, Garbage Collection i
6.9 FileRepairer e e
6.10 Security e e e e e e e e e e e e
6.11 Reliability e e e
The Tahoe-LAFS CLI commands

TL OVEIVIEW . . o oo i e e e e e e
7.2 CLICommand OVErVIEW i i ittt et ettt e e e e e e
7.3 Node Management e e e
7.4 File Store Manipulation e e e e e e e e e e
7.5 Storage Grid Maintenance i it e e e e e e e e e e e e
7.6 Debugging e e e e e e e e e e
The Tahoe REST-ful Web API

8.1 Enabling the web-APIport e
8.2 Basic Concepts: GET, PUT, DELETE, POST it
83 URLS . . . oo e e
8.4 Slow Operations, Progress, and Cancelling,
8.5 Programmatic Operations i i i e e e e e e e e e e e
8.6 Browser Operations: Human-oriented interfaces,
8.7 Other Useful Pages e e e e e e e e e
8.8 Static Filesin/public_html. e
8.9 Safety and Security Issues—Names vs. URIs L .
8.10 Concurrency ISSUES L L e e e e e e e
8.11 Access Blacklist e e
8.12 URLsand HTTPand UTF-8 e e e e
Tahoe-LAFS SFTP and FTP Frontends

9.1 SFTP/FTP Background i
9.2 Tahoe-LAFS Support. o o e e e e e e e e e e e
9.3 Creatingan AccountFile o e e
9.4 Running An Account Server (accounts.url) Lo
9.5 Configuring SFTP Access e
9.6 Configuring FTP ACCESS o v o it e e e e e e
0.7 Dependencies v v i v i e e e e e e e e e e e e e e e e e e
9.8 Immutable and Mutable Files e
9.9 Knownlssues.

10 Download status

10.1 Introduction 0 e e e e e e e e e
10.2 What’sinvolved inadownload? e e
10.3 Data on the download-status page it i e e e e e e e e

37
37
38
38
39
39
41
41
42
42
43
43

45
45
45
46
47
53
53

55
56
56
57
59
60
69
81
84
85
85
86
87

89
89
89
90
90
91
92
92
92
93

95
95
95

11

12

13

14

15

16

17

18

19

20

21

22

Known Issues

11.1 Known Issues in Tahoe-LAFS v1.10.3, released 30-Mar-2016
11.2 Known Issues in Tahoe-LAFS v1.9.0, released 31-Oct-2011
11.3 Known Issues in Tahoe-LAFS v1.8.2, released 30-Jan-2011

How To Configure A Server

12.1 Manual Configuration L e e e e e
12.2 Automatic Configuration L L e e e e e e e e e e e
12.3 Deployment Scenarios ittt e e e e e e e

The Tahoe Upload Helper

13,1 OVervIEW o o o o e e e e e e e e e e e e e e e e e e e
13.2 Setting Up A Helper e
13.3 UsingaHelper e e e e e e e e
13.4 Other Helper Modes o o e e e e e e e e e

The Convergence Secret

14.1 What ISTt? o e e e e
14.2 What If I Change My Convergence Secret? o v v i v v vt ittt e e e
143 HowToUselt e

Garbage Collection in Tahoe

IS.1 OVerview o o oo e e e e e e e e
15.2 Client-side Renewal L
15.3 Server Side Expiration e e e e e e e
15.4 Expiration Progress e e
15.5 Future Directions o o o it e e e e e e e e e

Statement on Backdoors

Donations

17.1 GOVEernance v o i it e e e e e e e e e e e e e e
17.2 Transparent ACCOUNLING v v v vt i it e e e e et e e e e e e e e e
17.3 Expenditure Addresses o i e e e e e e e e e e e e e e e e
17.4 Historical Donation Addresses 0 e e e e e e e
17.5 Validation e e e

Storage Server Donations

18.1 Sending Donations i e e e e e e e e e e e e
18.2 Receiving Donations e e
183 FurtherReading e

Expenses paid by donated BTC
19.1 BudgetItems L e e e e e e e e e e

Things To Be Careful About As We Venture Boldly Forth
20.1 Timing Attacks o o e e e e e e e e e e e e e

Avoiding Write Collisions in Tahoe

The Tahoe BackupDB

221 OVEIVIEW . . o o v vttt e e e e e e e e e e e
222 Schema e e
223 Upload Operation v v v i e et e e e e e e e e e e e e e e e e
224 Directory Operations ot vttt e e e e e e e e e

105
105
105
106

109
109
110
111
111

113
113
114
114

115
115
116
116
118
118

121

123
123
123
123
124
124

125
125
126
126

127
127

131
131

133

23

24

25

26

27

28

29

30

31

Developer Guide

23.1 Pre-commit Checks

Using Tahoe-LAFS with an anonymizing network: Tor, I2P

241 OVeIVIEW o e e e
242 USECASES . v v v v vt e e e e e e e e e e e e
24.3 Software Dependencies o o
244 Connection configuration oL e e
24.5 Anonymity configurationo
24.6 Performance and security issueso .

Node Keys in Tahoe-LAFS

25.1 Why Announcements Are Signed 0oL
25.2 How The Node ID Is Computed
25.3 Version Compatibility, Fallbacks For Old Versions
254 Share Placement

Performance costs for some common operations

26.1 Publishing an A-byte immutablefile
26.2 Publishing an A-byte mutable file
26.3 Downloading B bytes of an A-byte immutable file
26.4 Downloading B bytes of an A-byte mutablefile
26.5 Modifying B bytes of an A-byte mutablefile
26.6 Inserting/Removing B bytes in an A-byte mutable file
26.7 Adding an entry to an A-entry directory
26.8 Listing an Aentry directory oo
26.9 Checkingan A-bytefile L
26.10 Verifying an A-byte file immutable)
26.11 Verifying an A-byte file (mutable)
26.12 Repairing an A-byte file (mutable or immutable)

Tahoe Logging

27.1 OVEIVIEW . . o v v vttt e e e e e e e e e e
27.2 Realtime Logging e e
273 Incidents e e e e e e
274 Working with flogfiles
27.5 Gatherers e e e e e
27.6 Adding log messages it e e e e e e e e e e e
27.7 Log Messages During Unit Tests

Tahoe Statistics

28.1 OVerviewl
28.2 Statistics Categories v v v i e e e e e e e e e e e e e e e e
28.3 Running a Tahoe Stats-Gatherer Service
28.4 Using Munin To Graph Stats Values

How To Build Tahoe-LAFS On A Desert Island

29.1 How ThisWorks e

Debian and Ubuntu Support

30.1 Overview
30.2 Dependency Packages

Building Tahoe-LAFS on Windows

31.1 Preliminaries o e e e e e e e e e e

139
139

141
141
141
142
143
143
145

149
149
149
150
150

151
151
152
152
153
153
153
153
154
154
154
154
155

157
157
157
158
158
158
160
160

163
163
163
166
167

169
170

173
173
173

175

32

33

34

35

36

37

38

39

31.2 Imstallation L Lo e e
31.3 Running Tahoe-LAFS e e e e e
31.4 Installing A Different Version L e
31.5 Dependencieso e e e e

OS-X Packaging

Building pyOpenSSL on Windows

33.1 Download and install Microsoft Visual C++ compiler for Python2.7.
33.2 Download andinstall Perl
33.3 Download and install the latest OpenSSL version
33.4 Building PyOpenSSL L e e e

Specifications

34.1 Specification Document Outline L
342 Tahoe URIS o o o o e e e e e
343 FileEncoding. e e
344 URIExtensionBlock
345 Mutable Files o oL
34.6 Tahoe-LAFS Directory Nodes e
3477 Servers of Happiness L . oL e e e e e e e e e
34.8 Upload Strategy of Happiness i e
34.9 Redundant Array of Independent Clouds: Share To Cloud Mapping

Proposed Specifications
35.1 Leasedatabase designo e e e e e
35.2 Storage Node Protocol (“Great Black Swamp™, “GBS™)

Filesystem-specific notes
301 Xt3 . . e e e e e e e e e e e e e

Old Configuration Files
Using Tahoe as a key-value store

Indices and tables

177

179
179
179
179
180

181
181
184
187
189
190
202
208
209
211

217
217
221

231
231

233

235

237

vi

Tahoe-LAFS Documentation, Release 1.x

Contents:

CONTENTS 1

Tahoe-LAFS Documentation, Release 1.x

2 CONTENTS

CHAPTER
ONE

WELCOME TO TAHOE-LAFS!

1.1 What is Tahoe-LAFS?

Welcome to Tahoe-LAFS, the first decentralized storage system with provider-independent security.

Tahoe-LAFS is a system that helps you to store files. You run a client program on your computer, which talks to one
or more storage servers on other computers. When you tell your client to store a file, it will encrypt that file, encode it
into multiple pieces, then spread those pieces out among multiple servers. The pieces are all encrypted and protected
against modifications. Later, when you ask your client to retrieve the file, it will find the necessary pieces, make sure
they haven’t been corrupted, reassemble them, and decrypt the result.

The client creates more pieces (or “shares”) than it will eventually need, so even if some of the servers fail, you can
still get your data back. Corrupt shares are detected and ignored, so the system can tolerate server-side hard-drive
errors. All files are encrypted (with a unique key) before uploading, so even a malicious server operator cannot read
your data. The only thing you ask of the servers is that they can (usually) provide the shares when you ask for them:
you aren’t relying upon them for confidentiality, integrity, or absolute availability.

1.2 What is “provider-independent security”?

Every seller of cloud storage services will tell you that their service is “secure”. But what they mean by that is
something fundamentally different from what we mean. What they mean by “secure” is that after you’ve given them
the power to read and modify your data, they try really hard not to let this power be abused. This turns out to be
difficult! Bugs, misconfigurations, or operator error can accidentally expose your data to another customer or to the
public, or can corrupt your data. Criminals routinely gain illicit access to corporate servers. Even more insidious is the
fact that the employees themselves sometimes violate customer privacy out of carelessness, avarice, or mere curiosity.
The most conscientious of these service providers spend considerable effort and expense trying to mitigate these risks.

What we mean by “security” is something different. The service provider never has the ability to read or modify your
data in the first place: never. If you use Tahoe-LAFS, then all of the threats described above are non-issues to you. Not
only is it easy and inexpensive for the service provider to maintain the security of your data, but in fact they couldn’t
violate its security if they tried. This is what we call provider-independent security.

This guarantee is integrated naturally into the Tahoe-LAFS storage system and doesn’t require you to perform a manual
pre-encryption step or cumbersome key management. (After all, having to do cumbersome manual operations when
storing or accessing your data would nullify one of the primary benefits of using cloud storage in the first place:
convenience.)

Here’s how it works:

https://tahoe-lafs.org

Tahoe-LAFS Documentation, Release 1.x

A “storage grid” is made up of a number of storage servers. A storage server has direct attached storage (typically one
or more hard disks). A “gateway” communicates with storage nodes, and uses them to provide access to the grid over
protocols such as HTTP(S), SFTP or FTP.

Note that you can find “client” used to refer to gateway nodes (which act as a client to storage servers), and also to
processes or programs connecting to a gateway node and performing operations on the grid — for example, a CLI
command, Web browser, SFTP client, or FTP client.

Users do not rely on storage servers to provide confidentiality nor integrity for their data — instead all of the data is
encrypted and integrity-checked by the gateway, so that the servers can neither read nor modify the contents of the
files.

Users do rely on storage servers for availability. The ciphertext is erasure-coded into N shares distributed across at
least H distinct storage servers (the default value for N is 10 and for H is 7) so that it can be recovered from any X of
these servers (the default value of K is 3). Therefore only the failure of H-K+1 (with the defaults, 5) servers can make
the data unavailable.

In the typical deployment mode each user runs her own gateway on her own machine. This way she relies on her own
machine for the confidentiality and integrity of the data.

An alternate deployment mode is that the gateway runs on a remote machine and the user connects to it over HTTPS or
SFTP. This means that the operator of the gateway can view and modify the user’s data (the user relies on the gateway
for confidentiality and integrity), but the advantage is that the user can access the Tahoe-LAFS grid with a client that
doesn’t have the gateway software installed, such as an Internet kiosk or cell phone.

1.3 Access Control

There are two kinds of files: immutable and mutable. When you upload a file to the storage grid you can choose which
kind of file it will be in the grid. Immutable files can’t be modified once they have been uploaded. A mutable file can
be modified by someone with read-write access to it. A user can have read-write access to a mutable file or read-only
access to it, or no access to it at all.

A user who has read-write access to a mutable file or directory can give another user read-write access to that file
or directory, or they can give read-only access to that file or directory. A user who has read-only access to a file or
directory can give another user read-only access to it.

When linking a file or directory into a parent directory, you can use a read-write link or a read-only link. If you use
a read-write link, then anyone who has read-write access to the parent directory can gain read-write access to the
child, and anyone who has read-only access to the parent directory can gain read-only access to the child. If you use
a read-only link, then anyone who has either read-write or read-only access to the parent directory can gain read-only
access to the child.

For more technical detail, please see the the doc page on the Wiki.

1.4 Get Started

To use Tahoe-LAFS, please see Installing Tahoe-LAFS.

4 Chapter 1. Welcome to Tahoe-LAFS!

https://tahoe-lafs.org/trac/tahoe-lafs/wiki/Doc

Tahoe-LAFS Documentation, Release 1.x

1.5 License

Tahoe-LAFS is an open-source project; please see the top-level README for details.

1.5. License 5

https://github.com/tahoe-lafs/tahoe-lafs/blob/master/README.rst

Tahoe-LAFS Documentation, Release 1.x

6 Chapter 1. Welcome to Tahoe-LAFS!

CHAPTER
TWO

INSTALLING TAHOE-LAFS

Welcome to the Tahoe-LAFS project, a secure, decentralized, fault-tolerant storage system. See Welcome to Tahoe-
LAFS! for an overview of the architecture and security properties of the system.

This procedure should work on Windows, Mac, illumos (previously OpenSolaris), and too many flavors of Linux and
of BSD to list.

2.1 First: In Case Of Trouble

In some cases these instructions may fail due to peculiarities of your platform.

If the following instructions don’t Just Work without any further effort on your part, then please write to the tahoe-dev
mailing list where friendly hackers will help you out.

2.2 Pre-Packaged Versions

You may not need to build Tahoe at all.
If you are on Windows, please see Building Tahoe-LAFS on Windows for platform-specific instructions.

If you are on a Mac, you can either follow these instructions, or use the pre-packaged bundle described in OS-X
Packaging. The Tahoe project hosts pre-compiled “wheels” for all dependencies, so use the ——find-1inks= option
described below to avoid needing a compiler.

Many Linux distributions include Tahoe-LAFS packages. Debian and Ubuntu users can apt—-get install
tahoe-lafs. See OSPackages for other platforms.

2.3 Preliminaries

If you don’t use a pre-packaged copy of Tahoe, you can build it yourself. You’ll need Python2.7, pip, and virtualenv.
On unix-like platforms, you will need a C compiler, the Python development headers, and some libraries (libffi-dev
and libssl-dev).

On a modern Debian/Ubuntu-derived distribution, this command will get you everything you need:

apt-get install build-essential python-dev libffi-dev libssl-dev libyaml-dev python-—
—virtualenv

https://tahoe-lafs.org
https://tahoe-lafs.org/cgi-bin/mailman/listinfo/tahoe-dev
https://tahoe-lafs.org/cgi-bin/mailman/listinfo/tahoe-dev
https://tahoe-lafs.org/trac/tahoe-lafs/wiki/OSPackages

Tahoe-LAFS Documentation, Release 1.x

On OS-X, install pip and virtualenv as described below. If you want to compile the dependencies yourself (instead of
using ——find-1inks to take advantage of the pre-compiled ones we host), you’ll also need to install Xcode and its
command-line tools.

Note that Tahoe-LAFS depends on openssl 1.1.1c or greater.

2.3.1 Python 2.7

Check if you already have an adequate version of Python installed by running python -V. The latest version of
Python v2.7 is recommended, which is 2.7.11 as of this writing. Python v2.6.x and v3 do not work. On Windows,
we recommend the use of native Python v2.7, not Cygwin Python. If you don’t have one of these versions of Python
installed, download and install the latest version of Python v2.7. Make sure that the path to the installation directory
has no spaces in it (e.g. on Windows, do not install Python in the “Program Files” directory):

% python --version
Python 2.7.11

2.3.2 pip

Many Python installations already include pip, but in case yours does not, get it with the pip install instructions:
% pip —-version

pip 10.0.1 from ... (python 2.7)

2.3.3 virtualenv

If you do not have an OS-provided copy of virtualenv, install it with the instructions from the virtualenv docu-
mentation:

% virtualenv —-version
15.1.0

2.3.4 C compiler and libraries

Except on OS-X, where the Tahoe project hosts pre-compiled wheels for all dependencies, you will need several C
libraries installed before you can build. You will also need the Python development headers, and a C compiler (your
python installation should know how to find these).

On Debian/Ubuntu-derived systems, the necessary packages are python—-dev, libffi-dev, and 1ibssl-dev,
and can be installed with apt —get. On RPM-based system (like Fedora) these may be named python—-devel, etc,
instead, and cam be installed with yum or rpm.

Note that Tahoe-LAFS depends on openssl 1.1.1c or greater.

8 Chapter 2. Installing Tahoe-LAFS

https://www.python.org/downloads/
https://pip.pypa.io/en/stable/installing/
https://virtualenv.pypa.io/en/latest/installation.html
https://virtualenv.pypa.io/en/latest/installation.html

Tahoe-LAFS Documentation, Release 1.x

2.4 Install the Latest Tahoe-LAFS Release

We recommend creating a fresh virtualenv for your Tahoe-LAFS install, to isolate it from any python packages that
are already installed (and to isolate the rest of your system from Tahoe’s dependencies).

This example uses a virtualenv named venv, but you can call it anything you like. Many people prefer to keep all
their virtualenvs in one place, like ~/ . local/venvs/ or ~/venvs/.

It’s usually a good idea to upgrade the virtualenv’s pip and setuptools to their latest versions, with venv/bin/
pip install -U pip setuptools. Many operating systems have an older version of virtualenv, which
then includes older versions of pip and setuptools. Upgrading is easy, and only affects the virtualenv: not the rest of
your computer.

Then use the virtualenv’s pip to install the latest Tahoe-LAFS release from PyPI with venv/bin/pip install
tahoe-lafs. After installation, run venv/bin/tahoe —-version to confirm the install was successful:

% virtualenv venv
New python executable in ~/venv/bin/python2.7
Installing setuptools, pip, wheel...done.

% venv/bin/pip install -U pip setuptools
Downloading/unpacking pip from https://pypi.python.org/...

Successfully installed pip setuptools

% venv/bin/pip install tahoe-lafs
Collecting tahoe-lafs

Installing collected packages:
Successfully installed

% venv/bin/tahoe —--version
tahoe-lafs: 1.15.0
foolscap:

o

On OS-X,instead of pip install tahoe-lafs, use this command to take advantage of the hosted pre-compiled
wheels:

venv/bin/pip install --find-links=https://tahoe-lafs.org/deps tahoe-lafs

2.4.1 Install From a Source Tarball

You can also install directly from the source tarball URL:

[}

% virtualenv venv

New python executable in ~/venv/bin/python2.7

Installing setuptools, pip, wheel...done.

% venv/bin/pip install https://tahoe-lafs.org/downloads/tahoe-lafs-1.15.0.tar.bz2
Collecting https://tahoe-lafs.org/downloads/tahoe-lafs-1.15.0.tar.bz2

Installing collected packages:
Successfully installed

(continues on next page)

2.4. Install the Latest Tahoe-LAFS Release 9

Tahoe-LAFS Documentation, Release 1.x

(continued from previous page)

% venv/bin/tahoe —--version
tahoe-lafs: 1.15.0

2.4.2 Extras

Tahoe-LAFS provides some functionality only when explicitly requested at installation time. It does this using the
“extras” feature of setuptools. You can request these extra features when running the pip install command like
this:

°

% venv/bin/pip install tahoe-lafs[tor]

This example enables support for listening and connecting using Tor. The Tahoe-LAFS documentation for specific
features which require an explicit install-time step will mention the “extra” that must be requested.

2.4.3 Hacking On Tahoe-LAFS

To modify the Tahoe source code, you should get a git checkout, and install with the ——editable flag. You should
also use the [test] extra to get the additional libraries needed to run the unit tests:

o

git clone https://github.com/tahoe-lafs/tahoe-lafs.git

o\

cd tahoe-lafs

o\

virtualenv venv

% venv/bin/pip install —-editable . [test]
Obtaining file::~/tahoe-lafs

Successfully installed ...

% venv/bin/tahoe —--version
tahoe-lafs: 1.15.0

This way, you won’t have to re-run the pip install step each time you modify the source code.

2.5 Running the tahoe executable

The rest of the Tahoe-LAFS documentation assumes that you can run the t ahoe executable that you just created. You
have four basic options:

* Use the full path each time (e.g. ~/venv/bin/tahoe).

e “Activate” the virtualenv with . venv/bin/activate, to get a subshell with a SPATH that includes the
venv/bin/ directory, then you can just run tahoe.

* Change your $PATH to include the venv/bin/ directory, so you can just run tahoe.

e Symlink from ~/bin/tahoe to the tahoe executable. Since ~/bin is typically in your $SPATH (at least if
it exists when you log in), this will let you just run tahoe.

10 Chapter 2. Installing Tahoe-LAFS

https://virtualenv.pypa.io/en/latest/userguide.html#activate-script

Tahoe-LAFS Documentation, Release 1.x

You might also find the pipsi tool convenient: pipsi install tahoe-lafs will create a new virtualenv, install
tahoe into it, then symlink just the executable (into ~/ .local/bin/tahoe). Then either add ~/.local/bin/
to your $PATH, or make one last symlink into ~/bin/tahoe.

2.6 Running the Self-Tests

To run the self-tests from a source tree, you’ll need tox installed. On a Debian/Ubuntu system, use apt-get
install tox. You can also install it into your tahoe-specific virtualenv with pip install tox.

Then just run tox. This will create a new fresh virtualenv, install Tahoe (from the source tree, including any changes
you have made) and all its dependencies (including testing-only dependencies) into the virtualenv, then run the unit
tests. This ensures that the tests are repeatable and match the results of other users, unaffected by any other Python
packages installed on your machine. On a modern computer this will take 5-10 minutes, and should result in a “all
tests passed” mesage:

°

% tox

GLOB sdist-make: ~/tahoe-lafs/setup.py

py27 recreate: ~/tahoe-lafs/.tox/py27

py27 inst: ~/tahoe-lafs/.tox/dist/tahoe-lafs-1.15.0.zip

py27 runtests: commands[0] | tahoe —-version

py27 runtests: commands[l] | trial --rterrors allmydata

allmydata.test.test_auth

AccountFileCheckerKeyTests
test_authenticated ... [OK]
test_missing_signature ... [OK]

Ran 1186 tests in 423.179s

PASSED (skips=7, expectedFailures=3, successes=1176)
summary

py27: commands succeeded
congratulations :)

2.7 Common Problems

If you see an error like fatal error: Python.h: ©No such file or directory while compiling
the dependencies, you need the Python development headers. If you are on a Debian or Ubuntu system, you can install
them with sudo apt—-get install python-dev. On RedHat/Fedora, install python-devel.

Similar errors about openssl/crypto.h indicate that you are missing the OpenSSL development headers
(Libssl-dev). Likewise ££i.h means you need 1ibffi-dev.

Note that Tahoe-LAFS depends on openssl 1.1.1c or greater.

2.6. Running the Self-Tests 11

https://pypi.python.org/pypi/pipsi/0.9

Tahoe-LAFS Documentation, Release 1.x

2.8 Using Tahoe-LAFS

Now you are ready to deploy a decentralized filesystem. You will use the t ahoe executable to create, configure, and
launch your Tahoe-LAFS nodes. See How To Run Tahoe-LAFS for instructions on how to do that.

12 Chapter 2. Installing Tahoe-LAFS

CHAPTER
THREE

HOW TO RUN TAHOE-LAFS

3.1 Introduction

This is how to run a Tahoe-LAFS client or a complete Tahoe-LAFS grid. First you have to install the Tahoe-LAFS
software, as documented in /nstalling Tahoe-LAF'S.

The tahoe program in your virtualenv’s bin directory is used to create, start, and stop nodes. Each node lives in a
separate base directory, in which there is a configuration file named tahoe.cfg. Nodes read and write files within
this base directory.

A grid consists of a set of storage nodes and client nodes running the Tahoe-LAFS code. There is also an introducer
node that is responsible for getting the other nodes talking to each other.

If you’re getting started we recommend you try connecting to the public test grid as you only need to create a client
node. When you want to create your own grid you’ll need to create the introducer and several initial storage nodes
(see the note about small grids below).

3.1.1 Being Introduced to a Grid

A collection of Tahoe servers is called a Grid and usually has 1 Introducer (but sometimes more, and it’s possible to
run with zero). The Introducer announces which storage servers constitute the Grid and how to contact them. There is
a secret “fURL” you need to know to talk to the Introducer.

One way to get this secret is using traditional tools such as encrypted email, encrypted instant-messaging, etcetera. It
is important to transmit this fURL secretly as knowing it gives you access to the Grid.

An additional way to share the fURL securely is via magic wormhole. This uses a weak one-time password and a
server on the internet (at wormhole.tahoe-lafs.org) to open a secure channel between two computers. In Tahoe-LAFS
this functions via the commands tahoe invite and tahoe create-client —join. A person who already has access to a
Grid can use tahoe invite to create one end of the magic wormhole and then transmits some JSON (including the
Introducer’s secret fURL) to the other end. tahoe invite will print a one-time secret code; you must then communicate
this code to the person who will join the Grid.

The other end of the magic wormhole in this case is tahoe create-client —join <one-time code>, where the person
being invited types in the code they were given. Ideally, this code would be transmitted securely. It is, however, only
useful exactly once. Also, it is much easier to transcribe by a human. Codes look like 7-surrender-tunnel (a short
number and two words).

13

https://tahoe-lafs.org/trac/tahoe-lafs/wiki/TestGrid
https://magic-wormhole.io/
https://magic-wormhole.io/
https://magic-wormhole.io/

Tahoe-LAFS Documentation, Release 1.x

3.1.2 Running a Client

To construct a client node, run “tahoe create-client”, which will create ~/ .tahoe to be the node’s base
directory. Acquire the introducer. furl (see below if you are running your own introducer, or use the one from
the TestGrid page), and paste it after introducer.furl =inthe [client] section of ~/.tahoe/tahoe.
cfg. Thenuse “tahoe run ~/.tahoe”. After that, the node should be off and running. The first thing it will do
is connect to the introducer and get itself connected to all other nodes on the grid.

Some Grids use “magic wormhole” one-time codes to configure the basic options. In such a case you use tahoe
create-client --join <one-time-code> and do not have to do any of the tahoe.cfg editing men-
tioned above.

By default, “cahoe create-client” creates a client-only node, that does not offer its disk space to other nodes.
To configure other behavior, use “tahoe create—node” or see Configuring a Tahoe-LAFS node.

The “tahoe run” command above will run the node in the foreground. On Unix, you can run it in the background
instead by using the “tahoe start” command. To stop a node started in this way, use “tahoe stop”. tahoe
——help gives a summary of all commands.

3.1.3 Running a Server or Introducer

To build either a storage server node, or an introducer node, you’ll need a way for clients to connect to it. The simplest
case is when the computer is on the public internet (e.g. a “VPS” virtual private server, with a public IP address and a
DNS hostname like example.net). See How To Configure A Server for help with more complex scenarios, using
the ——port and ——1location arguments.

To construct an introducer, create a new base directory for it (the name of the directory is up to you), cd into it, and
run “tahoe create-introducer —--hostname=example.net .” (butusing the hostname of your VPS).
Now run the introducer using “tahoe start .”. After it starts, it will write a file named introducer. furl
into the private/ subdirectory of that base directory. This file contains the URL the other nodes must use in order
to connect to this introducer. (Note that “tahoe run .” doesn’t work for introducers, this is a known issue: #937.)

You can distribute your Introducer fURL securely to new clients by using the tahoe invite command. This will
prepare some JSON to send to the other side, request a magic wormhole code from wormhole.tahoe-lafs.org
and print it out to the terminal. This one-time code should be transmitted to the user of the client, who can then run
tahoe create-client --join <one-time-code>.

Storage servers are created the same way: tahoe create-node —--hostname=HOSTNAME . from a new di-
rectory. You’ll need to provide the introducer FURL (either as a ——introducer= argument, or by editing the
tahoe. cfg configuration file afterwards) to connect to the introducer of your choice.

See Configuring a Tahoe-LAFS node for more details about how to configure Tahoe-LAFS.

3.1.4 A note about small grids

By default, Tahoe-LLAFS ships with the configuration parameter shares . happy set to 7. If you are using Tahoe-
LAFS on a grid with fewer than 7 storage nodes, this won’t work well for you — none of your uploads will succeed.
To fix this, see Configuring a Tahoe-LAFS node to learn how to set shares . happy to a more suitable value for your
grid.

14 Chapter 3. How To Run Tahoe-LAFS

https://tahoe-lafs.org/trac/tahoe-lafs/wiki/TestGrid
https://tahoe-lafs.org/trac/tahoe-lafs/ticket/937
https://magic-wormhole.io/

Tahoe-LAFS Documentation, Release 1.x

3.1.5 Development with Docker

If you want to stand up a small local test environment, you can install Docker and Docker Compose. Once you have
cloned the repository, run docker-compose up from the project’s root directory. This will start a introducer,
server, and a client configured to connect to them. After the containers start, you can access the WUI by navigating to
http://localhost:3456 in your browser.

3.2 Do Stuff With It

This is how to use your Tahoe-LAFS node.

3.2.1 The WUI

Point your web browser to http://127.0.0.1:3456 — which is the URL of the gateway running on your own local
computer — to use your newly created node.

Create a new directory (with the button labelled “create a directory”). Your web browser will load the new directory.
Now if you want to be able to come back to this directory later, you have to bookmark it, or otherwise save a copy of
the URL. If you lose the URL to this directory, then you can never again come back to this directory.

3.2.2 The CLI

Prefer the command-line? Run “tahoe —--help” (the same command-line tool that is used to start and stop nodes
serves to navigate and use the decentralized file store). To get started, create a new directory and mark it as the ‘tahoe:’
alias by running “tahoe create-alias tahoe”. Once you’'ve done that, you can do “tahoe 1ls tahoe:”
and “tahoe cp LOCALFILE tahoe:foo.txt”towork with your file store. The Tahoe-LAFS CLI uses similar
syntax to the well-known scp and rsync tools. See The Tahoe-LAFS CLI commands for more details.

To backup a directory full of files and subdirectories, run “tahoe backup LOCALDIRECTORY tahoe:”. This
will create a new LAFS subdirectory inside the “tahoe” LAFS directory named “Archive”, and inside “Archive”,
it will create a new subdirectory whose name is the current date and time. That newly created subdirectory will
be populated with a snapshot copy of all files and directories currently reachable from LOCALDIRECTORY. Then
tahoe backup will make a link to that snapshot directory from the “tahoe” LAFS directory, and name the link
“Latest”.

tahoe backup cleverly avoids uploading any files or directories that haven’t changed, and it also cleverly dedupli-
cates any files or directories that have identical contents to other files or directories that it has previously backed-up.
This means that running tahoe backup is a nice incremental operation that backs up your files and directories
efficiently, and if it gets interrupted (for example by a network outage, or by you rebooting your computer during the
backup, or so on), it will resume right where it left off the next time you run tahoe backup.

See The Tahoe-LAFS CLI commands for more information about the tahoe backup command, as well as other
commands.

As with the WUI (and with all current interfaces to Tahoe-LAFS), you are responsible for remembering directory
capabilities yourself. If you create a new directory and lose the capability to it, then you cannot access that directory
ever again.

3.2. Do Stuff With It 15

https://docs.docker.com/
https://docs.docker.com/compose/
http://127.0.0.1:3456

Tahoe-LAFS Documentation, Release 1.x

3.2.3 The SFTP and FTP frontends

You can access your Tahoe-LAFS grid via any SFTP or FTP client. See Tahoe-LAFS SFTP and FTP Frontends for
how to set this up. On most Unix platforms, you can also use SFTP to plug Tahoe-LAFS into your computer’s local
filesystem via sshfs, but see the FAQ about performance problems.

The SftpFrontend page on the wiki has more information about using SFTP with Tahoe-LAFS.

3.2.4 The WAPI

Want to program your Tahoe-LAFS node to do your bidding? Easy! See The Tahoe REST-ful Web API.

3.3 Socialize

You can chat with other users of and hackers of this software on the #tahoe-lafs IRC channel at irc.freenode.
net, or on the tahoe-dev mailing list.

3.4 Complain

Bugs can be filed on the Tahoe-LAFS “Trac” instance, at https://tahoe-lafs.org/trac/ .

You can also “fork” the repo and submit Pull Requests on Github: https://github.com/tahoe-lafs/tahoe-lafs .

16 Chapter 3. How To Run Tahoe-LAFS

https://en.wikipedia.org/wiki/SSH_file_transfer_protocol
https://en.wikipedia.org/wiki/File_Transfer_Protocol
https://tahoe-lafs.org/trac/tahoe-lafs/wiki/FAQ#Q23_FUSE
https://tahoe-lafs.org/trac/tahoe-lafs/wiki/SftpFrontend
https://tahoe-lafs.org/cgi-bin/mailman/listinfo/tahoe-dev
https://tahoe-lafs.org/trac/
https://github.com/tahoe-lafs/tahoe-lafs

CHAPTER
FOUR

MAGIC WORMHOLE INVITES

4.1 Magic Wormhole

magic wormhole is a server and a client which together use Password Authenticated Key Exchange (PAKE) to use a
short code to establish a secure channel between two computers. These codes are one-time use and an attacker gets at
most one “guess”, thus allowing low-entropy codes to be used.

4.2 Invites and Joins

Inside Tahoe-LAFS we are using a channel created using magic wormhole to exchange configuration and the secret
fURL of the Introducer with new clients.

This is a two-part process. Alice runs a grid and wishes to have her friend Bob use it as a client. She runs tahoe
invite bob which will print out a short “wormhole code” like 2—unicorn—-quiver. You may also include some
options for total, happy and needed shares if you like.

Alice then transmits this one-time secret code to Bob. Alice must keep her command running until Bob has done his
step as it is waiting until a secure channel is established before sending the data.

Bob then runs tahoe create-client --join <secret code> with any other options he likes. This will
“use up” the code establishing a secure session with Alice’s computer. If an attacker tries to guess the code, they get
only once chance to do so (and then Bob’s side will fail). Once Bob’s computer has connected to Alice’s computer, the
two computers performs the protocol described below, resulting in some JSON with the Introducer fURL, nickname
and any other options being sent to Bob’s computer. The tahoe create-client command then uses these
options to set up Bob’s client.

4.3 Tahoe-LAFS Secret Exchange

The protocol that the Alice (the one doing the invite) and Bob (the one being invited) sides perform once a magic
wormhole secure channel has been established goes as follows:

Alice and Bob both immediately send an “abilities” message as JSON. For Alice this is {"abilities":
{"server-v1": {}1}. For Bob, thisis {"abilities": {"client-v1": {}}}.

After receiving the message from the other side and confirming the expected protocol, Alice transmits the configuration
JSON:

{
"needed": 3,
"total": 10,

(continues on next page)

17

https://github.com/warner/magic-wormhole#design
https://github.com/warner/magic-wormhole#design

Tahoe-LAFS Documentation, Release 1.x

(continued from previous page)

"happy": 7,
"nickname": "bob",
"introducer": "pb://XXXXXXKXXKXXXKXXKXXKXXXKXXKXXKXXXXXXxXxX@example.com:41505/

SYYYYYYYYYVYYYYYYYYYYYYY"
}

Both sides then disconnect.

As you can see, there is room for future revisions of the protocol but as of yet none have been sketched out.

18 Chapter 4. Magic Wormhole Invites

CHAPTER
FIVE

—

—_— = e
N =

13.

© Y ® =N 0k WD

Node Types

Overall Node Configuration
Connection Management

Client Configuration

Storage Server Configuration
Storage Server Plugin Configuration
Frontend Configuration

Running A Helper

Running An Introducer

Other Files in BASEDIR

. Static Server Definitions

Other files

Example

CONFIGURING A TAHOE-LAFS NODE

A Tahoe-LAFS node is configured by writing to files in its base directory. These files are read by the node when it
starts, so each time you change them, you need to restart the node.

The node also writes state to its base directory, so it will create files on its own.

This document contains a complete list of the config files that are examined by the client node, as well as the state files
that you’ll observe in its base directory.

The main file is named “tahoe.cfg”, and is an “.INI”-style configuration file (parsed by the Python stdlib Con-
figParser module: “[name]” section markers, lines with “key.subkey: wvalue”, RFC822-style continua-
tions). There are also other files containing information that does not easily fit into this format. The “tahoe
create-node” or “tahoe create-client” command will create an initial tahoe.cfg file for you. After
creation, the node will never modify the tahoe . cfg file: all persistent state is put in other files.

The item descriptions below use the following types:

boolean

one of (True, yes, on, 1, False, off, no, 0), case-insensitive

strports string

a Twisted listening-port specification string, like “t cp: 80”7 or “t cp:3456:interface=127.0.0.
1”. For a full description of the format, see the Twisted strports documentation. Please note, if interface=
is not specified, Tahoe-LAFS will attempt to bind the port specified on all interfaces.

19

https://en.wikipedia.org/wiki/INI_file
https://docs.python.org/2/library/configparser.html
https://docs.python.org/2/library/configparser.html
https://www.ietf.org/rfc/rfc0822
https://twistedmatrix.com/documents/current/api/twisted.application.strports.html

Tahoe-LAFS Documentation, Release 1.x

endpoint specification string

a Twisted Endpoint specification string, like “tcp:80” or “tcp:3456:interface=127.0.0.1".
These are replacing strports strings. For a full description of the format, see the Twisted Endpoints docu-
mentation. Please note, if interface= is not specified, Tahoe-LAFS will attempt to bind the port specified
on all interfaces. Also note that tub.port only works with TCP endpoints right now.

FURL string

5.1

a Foolscap endpoint identifier, like pb://sokljdy7eok5c3xkmjeqpw@192.168.69.
247:44801/egpwgtzm

Node Types

A node can be a client/server, an introducer, or a statistics gatherer.

Client/server nodes provide one or more of the following services:

web-API service
SFTP service
FTP service
helper service

storage service.

A client/server that provides storage service (i.e. storing shares for clients) is called a “storage server”. If it pro-
vides any of the other services, it is a “storage client” (a node can be both a storage server and a storage client). A
client/server node that provides web-API service is called a “gateway”.

5.2

Overall Node Configuration

This section controls the network behavior of the node overall: which ports and IP addresses are used, when connec-
tions are timed out, etc. This configuration applies to all node types and is independent of the services that the node is
offering.

If your node is behind a firewall or NAT device and you want other clients to connect to it, you’ll need to open a port
in the firewall or NAT, and specify that port number in the tub.port option. If behind a NAT, you may need to set the

tub.location option described below.
[node]
nickname = (UTF-8 string, optional)

This value will be displayed in management tools as this node’s “nickname”. If not provided, the nick-
name will be set to “<unspecified>". This string shall be a UTF-8 encoded Unicode string.

web.port = (strports string, optional)

This controls where the node’s web server should listen, providing node status and, if the node is a
client/server, providing web-API service as defined in The Tahoe REST-ful Web API.

This file contains a Twisted “strports” specification such as “3456” or
“tcp:3456:interface=127.0.0.1". The “tahoe create-node” or “tahoe
create-client” commands set the web.port to “tcp:3456:interface=127.0.0.1"
by default; this is overridable by the ——webport option. You can make it use SSL by writing
“ssl:3456:privateKey=mykey.pem:certKey=cert.pem” instead.

20

Chapter 5. Configuring a Tahoe-LAFS node

http://twistedmatrix.com/documents/current/core/howto/endpoints.html#endpoint-types-included-with-twisted
http://twistedmatrix.com/documents/current/core/howto/endpoints.html#endpoint-types-included-with-twisted

Tahoe-LAFS Documentation, Release 1.x

If this is not provided, the node will not run a web server.
web.static = (string, optional)

This controls where the /static portion of the URL space is served. The value is a directory name
(~username is allowed, and non-absolute names are interpreted relative to the node’s basedir), which
can contain HTML and other files. This can be used to serve a Javascript-based frontend to the Tahoe-
LAFS node, or other services.

The default value is “public_html”, which will serve BASEDIR/public_html . With the default
settings, http://127.0.0.1:3456/static/foo.html will serve the contents of BASEDIR/
public_html/foo.html.

tub.port = (endpoint specification strings or "disabled", optional)

This controls which port the node uses to accept Foolscap connections from other nodes. It is parsed
as a comma-separated list of Twisted “server endpoint descriptor” strings, each of which is a value like
tcp:12345and tcp:23456:interface=127.0.0.1.

To listen on multiple ports at once (e.g. both TCP-on-IPv4 and TCP-on-IPv6), use some-
thing like tcp6:interface=2600\:3c01\:£f03c\:91ff\:fe93\:d272:3456,
tcp:interface=8.8.8.8:3456. Lists of endpoint descriptor strings like the following
tcp:12345,tcp6:12345 are known to not work because an Address already in use.
error.

If any descriptor begins with 1listen:tor,or listen: i2p, the corresponding tor/i2p Provider object
will construct additional endpoints for the Tub to listen on. This allows the [tor] or [i2p] sections
in tahoe. cfg to customize the endpoint; e.g. to add I2CP control options. If you use 1isten:i2p,
you should not also have an 12p: . . endpoint in tub.port, as that would result in multiple I2P-based
listeners.

If tub.port is the string disabled, the node will not listen at all, and thus cannot accept connections
from other nodes. If [storage] enabled = true, or [helper] enabled = true, or the
node is an Introducer, then it is an error to have tub.port be empty. If tub.port is disabled, then
tub.location must also be disabled, and vice versa.

For backwards compatibility, if this contains a simple integer, it will be used as a TCP port number, like
tcp: %d (which will accept connections on all interfaces). However tub . port cannot be 0 or tcp: 0
(older versions accepted this, but the node is no longer willing to ask Twisted to allocate port numbers in
this way). If tub.port is present, it may not be empty.

If the tub.port config key is not provided (e.g. tub.port appears nowhere in the [node] section,
or is commented out), the node will look in BASEDIR/client.port (or BASEDIR/introducer.
port, for introducers) for the descriptor that was used last time.

If neither tub . port nor the port file is available, the node will ask the kernel to allocate any available
port (the moral equivalent of t cp: 0). The allocated port number will be written into a descriptor string
in BASEDIR/client .port (or introducer.port), so that subsequent runs will re-use the same
port.

tub.location = (hint string or "disabled", optional)

In addition to running as a client, each Tahoe-LAFS node can also run as a server, listening for con-
nections from other Tahoe-LAFS clients. The node announces its location by publishing a “FURL” (a
string with some connection hints) to the Introducer. The string it publishes can be found in BASEDIR/
private/storage.furl. The tub.location configuration controls what location is published
in this announcement.

If your node is meant to run as a server, you should fill this in, using a hostname or IP address that is
reachable from your intended clients.

5.2. Overall Node Configuration 21

Tahoe-LAFS Documentation, Release 1.x

If tub.port issetto disabled, then tub.location mustalso be disabled.

If you don’t provide tub.location, the node will try to figure out a useful one by itself, by using
tools like “i fconfig” to determine the set of IP addresses on which it can be reached from nodes both
near and far. It will also include the TCP port number on which it is listening (either the one specified by
tub.port, or whichever port was assigned by the kernel when tub . port is left unspecified). However
this automatic address-detection is discouraged, and will probably be removed from a future release. It
will include the 127.0.0.1 “localhost” address (which is only useful to clients running on the same
computer), and RFC1918 private-network addresses like 10.*.* .+ and 192.168.« . (which are
only useful to clients on the local LAN). In general, the automatically-detected IP addresses will only be
useful if the node has a public IP address, such as a VPS or colo-hosted server.

You will certainly need to set tub . location if your node lives behind a firewall that is doing inbound
port forwarding, or if you are using other proxies such that the local IP address or port number is not the
same one that remote clients should use to connect. You might also want to control this when using a Tor
proxy to avoid revealing your actual IP address through the Introducer announcement.

If tub.location is specified, by default it entirely replaces the automatically determined set of IP
addresses. To include the automatically determined addresses as well as the specified ones, include the
uppercase string “AUTO” in the list.

The value is a comma-separated string of method:host:port location hints, like this:

tcp:123.45.67.89:8098,tcp:tahoe.example.com:8098,tcp:127.0.0.1:8098

A few examples:

* Don’t listen at all (client-only mode):

tub.port = disabled
tub.location = disabled

¢ Use a DNS name so you can change the IP address more easily:

tub.port = tcp:8098
tub.location = tcp:tahoe.example.com:8098

* Run a node behind a firewall (which has an external IP address) that has been configured to forward
external port 7912 to our internal node’s port 8098:

tub.port = tcp:8098
tub.location = tcp:external-firewall.example.com:7912

* Emulate default behavior, assuming your host has public IP address of 123.45.67.89, and the kernel-
allocated port number was 8098:

tub.port = tcp:8098
tub.location = tcp:123.45.67.89:8098,tcp:127.0.0.1:8098

¢ Use a DNS name but also include the default set of addresses:

tub.port = tcp:8098
tub.location = tcp:tahoe.example.com:8098,AUTO

* Run a node behind a Tor proxy (perhaps via torsocks), in client-only mode (i.e. we can make out-
bound connections, but other nodes will not be able to connect to us). The literal ‘unreachable.
example.org’ will not resolve, but will serve as a reminder to human observers that this node
cannot be reached. “Don’t call us.. we’ll call you™:

22 Chapter 5. Configuring a Tahoe-LAFS node

Tahoe-LAFS Documentation, Release 1.x

tub.port = tcp:8098
tub.location = tcp:unreachable.example.org:0

* Run a node behind a Tor proxy, and make the server available as a Tor “hidden service”. (This
assumes that other clients are running their node with torsocks, such that they are prepared to
connect to a . onion address.) The hidden service must first be configured in Tor, by giving it a
local port number and then obtaining a . onion name, using something in the torrc file like:

HiddenServiceDir /var/lib/tor/hidden_services/tahoe
HiddenServicePort 29212 127.0.0.1:8098

once Tor is restarted, the . onion hostname will be in /var/lib/tor/hidden_services/
tahoe/hostname. Then set up your tahoe. cfqg like:

tub.port = tcp:8098
tub.location = tor:ualhejtg2p7ohfbb.onion:29212

log_gatherer.furl = (FURL, optional)

If provided, this contains a single FURL string that is used to contact a “log gatherer”, which will be
granted access to the logport. This can be used to gather operational logs in a single place. Note that
in previous releases of Tahoe-LAFS, if an old-style BASEDIR/log_gatherer. furl file existed it
would also be used in addition to this value, allowing multiple log gatherers to be used at once. As of
Tahoe-LAFS v1.9.0, an old-style file is ignored and a warning will be emitted if one is detected. This
means that as of Tahoe-LAFS v1.9.0 you can have at most one log gatherer per node. See ticket #1423
about lifting this restriction and letting you have multiple log gatherers.

timeout.keepalive = (integer in seconds, optional)
timeout.disconnect = (integer in seconds, optional)

If timeout.keepalive is provided, it is treated as an integral number of seconds, and sets the
Foolscap “keepalive timer” to that value. For each connection to another node, if nothing has been heard
for a while, we will attempt to provoke the other end into saying something. The duration of silence that
passes before sending the PING will be between KT and 2*KT. This is mainly intended to keep NAT
boxes from expiring idle TCP sessions, but also gives TCP’s long-duration keepalive/disconnect timers
some traffic to work with. The default value is 240 (i.e. 4 minutes).

If timeout.disconnect is provided, this is treated as an integral number of seconds, and sets the Foolscap
“disconnect timer” to that value. For each connection to another node, if nothing has been heard for a
while, we will drop the connection. The duration of silence that passes before dropping the connection
will be between DT-2*KT and 2*DT+2*KT (please see ticket #521 for more details). If we are sending a
large amount of data to the other end (which takes more than DT-2*KT to deliver), we might incorrectly
drop the connection. The default behavior (when this value is not provided) is to disable the disconnect
timer.

See ticket #521 for a discussion of how to pick these timeout values. Using 30 minutes means we’ll
disconnect after 22 to 68 minutes of inactivity. Receiving data will reset this timeout, however if we have
more than 22min of data in the outbound queue (such as 800kB in two pipelined segments of 10 shares
each) and the far end has no need to contact us, our ping might be delayed, so we may disconnect them
by accident.

tempdir = (string, optional)

This specifies a temporary directory for the web-API server to use, for holding large files while they are
being uploaded. If a web-API client attempts to upload a 10GB file, this tempdir will need to have at least
10GB available for the upload to complete.

5.2. Overall Node Configuration 23

https://tahoe-lafs.org/trac/tahoe-lafs/ticket/1423
https://tahoe-lafs.org/trac/tahoe-lafs/ticket/521
https://tahoe-lafs.org/trac/tahoe-lafs/ticket/521

Tahoe-LAFS Documentation, Release 1.x

The default value is the tmp directory in the node’s base directory (i.e. BASEDIR/tmp), but it can be
placed elsewhere. This directory is used for files that usually (on a Unix system) go into /tmp. The string
will be interpreted relative to the node’s base directory.

reveal-IP-address = (boolean, optional, defaults to True)

This is a safety flag. When set to False (aka “private mode”), the node will refuse to start if any of the
other configuration options would reveal the node’s IP address to servers or the external network. This
flag does not directly affect the node’s behavior: its only power is to veto node startup when something
looks unsafe.

The default is True (non-private mode), because setting it to False requires the installation of additional
libraries (use pip install tahoe-lafs[tor] and/or pip install tahoe-lafs[i2p] to
get them) as well as additional non-python software (Tor/I2P daemons). Performance is also generally
reduced when operating in private mode.

When False, any of the following configuration problems will cause tahoe start to throw a Privacy-
Error instead of starting the node:

* [node] tub.location contains any tcp: hints
* [node] tub.location uses AUTO, or is missing/empty (because that defaults to AUTO)

* [connections] tcp =is setto tcp (or left as the default), rather than being set to tor or
disabled

5.3 Connection Management

Three sections ([tor], [12p], and [connections]) control how the Tahoe node makes outbound connections.
Tor and I2P are configured here. This also controls when Tor and I2P are used: for all TCP connections (to hide your
IP address), or only when necessary (just for servers which declare that they need Tor, because they use .onion
addresses).

Note that if you want to protect your node’s IP address, you should set [node] reveal-IP-address =
False, which will refuse to launch the node if any of the other configuration settings might violate this privacy

property.

5.3.1 [connections]
This section controls when Tor and I2P are used. The [tor] and [12p] sections (described later) control how
Tor/I2P connections are managed.

All Tahoe nodes need to make a connection to the Introducer; the [client] introducer.furl setting (de-
scribed below) indicates where the Introducer lives. Tahoe client nodes must also make connections to storage servers:
these targets are specified in announcements that come from the Introducer. Both are expressed as FURLs (a Foolscap
URL), which include a list of “connection hints”. Each connection hint describes one (of perhaps many) network
endpoints where the service might live.

Connection hints include a type, and look like:
e tcp:tahoe.example.org:12345
e tor:u33mdy7klhz3b.onion:1000

e i2p:c2ng2pbrmxmlwpijn

24 Chapter 5. Configuring a Tahoe-LAFS node

Tahoe-LAFS Documentation, Release 1.x

tor hints are always handled by the t or handler (configured in the [tor] section, described below). Likewise, 1 2p
hints are always routed to the i 2p handler. But either will be ignored if Tahoe was not installed with the necessary
Tor/I2P support libraries, or if the Tor/I2P daemon is unreachable.

The [connections] section lets you control how tcp hints are handled. By default, they use the normal TCP
handler, which just makes direct connections (revealing your node’s IP address to both the target server and the
intermediate network). The node behaves this way if the [connections] section is missing entirely, or if it looks
like this:

[connections]
tcp = tcp

To hide the Tahoe node’s IP address from the servers that it uses, set the [connections] section to use Tor for
TCP hints:

[connections]
tcp = tor

You can also disable TCP hints entirely, which would be appropriate when running an 12P-only node:

[connections]
tcp = disabled

(Note that I2P does not support connections to normal TCP ports, so [connections] tcp = 12p isinvalid)

In the future, Tahoe services may be changed to live on HTTP/HTTPS URLs instead of Foolscap. In that case,
connections will be made using whatever handler is configured for t cp hints. So the same tcp = tor configuration
will work.

5.3.2 [tor]

This controls how Tor connections are made. The defaults (all empty) mean that, when Tor is needed, the node will try
to connect to a Tor daemon’s SOCKS proxy on localhost port 9050 or 9150. Port 9050 is the default Tor SOCKS port,
so it should be available under any system Tor instance (e.g. the one launched at boot time when the standard Debian
tor package is installed). Port 9150 is the SOCKS port for the Tor Browser Bundle, so it will be available any time
the TBB is running.

You can set launch = True to cause the Tahoe node to launch a new Tor daemon when it starts up (and kill it at
shutdown), if you don’t have a system-wide instance available. Note that it takes 30-60 seconds for Tor to get running,
so using a long-running Tor process may enable a faster startup. If your Tor executable doesn’t live on $SPATH, use
tor.executable= to specify it.

[tor]
enabled = (boolean, optional, defaults to True)

If False, this will disable the use of Tor entirely. The default of True means the node will use Tor, if
necessary, and if possible.

socks.port = (string, optional, endpoint specification string, defaults to
empty)

This tells the node that Tor connections should be routed to a SOCKS proxy listening on the given end-
point. The default (of an empty value) will cause the node to first try localhost port 9050, then if that
fails, try localhost port 9150. These are the default listening ports of the standard Tor daemon, and the Tor
Browser Bundle, respectively.

While this nominally accepts an arbitrary endpoint string, internal limitations prevent it from accepting
anything but tcp:HOST :PORT (unfortunately, unix-domain sockets are not yet supported). See ticket

5.3. Connection Management 25

Tahoe-LAFS Documentation, Release 1.x

#2813 for details. Also note that using a HOST of anything other than localhost is discouraged, because
you would be revealing your IP address to external (and possibly hostile) machines.

control.port = (string, optional, endpoint specification string)

This tells the node to connect to a pre-existing Tor daemon on the given control port (which is typically
unix://var/run/tor/control or tcp:localhost:9051). The node will then ask Tor what
SOCKS port it is using, and route Tor connections to that.

launch = (bool, optional, defaults to False)

If True, the node will spawn a new (private) copy of Tor at startup, and will kill it at shutdown. The new
Tor will be given a persistent state directory under NODEDIR/private/, where Tor’s microdescriptors
will be cached, to speed up subsequent startup.

tor.executable = (string, optional, defaults to empty)

This controls which Tor executable is used when launch = True. If empty, the first executable pro-
gram named tor found on $PATH will be used.

There are 5 valid combinations of these configuration settings:
* 1: (empty): use SOCKS on port 9050/9150
e 2: launch = true: launch a new Tor
* 3: socks.port = tcp:HOST:PORT: use an existing Tor on the given SOCKS port
* 4: control.port = ENDPOINT: use an existing Tor at the given control port

e 5: enabled = false: no Toratall

1 is the default, and should work for any Linux host with the system Tor package installed. 2 should work on any box
with Tor installed into $PATH, but will take an extra 30-60 seconds at startup. 3 and 4 can be used for specialized
installations, where Tor is already running, but not listening on the default port. 5 should be used in environments

where Tor is installed, but should not be used (perhaps due to a site-wide policy).

Note that Tor support depends upon some additional Python libraries. To install Tahoe with Tor support, use pip

install tahoe-lafs[tor].

5.3.3 [i2p]

This controls how I2P connections are made. Like with Tor, the all-empty defaults will cause I2P connections to be

routed to a pre-existing I2P daemon on port 7656. This is the default SAM port for the i2p daemon.
[i2p]
enabled = (boolean, optional, defaults to True)

If False, this will disable the use of I2P entirely. The default of True means the node will use I2P, if
necessary, and if possible.

sam.port = (string, optional, endpoint descriptor, defaults to empty)

This tells the node that I2P connections should be made via the SAM protocol on the given port. The
default (of an empty value) will cause the node to try localhost port 7656. This is the default listening port
of the standard I2P daemon.

launch = (bool, optional, defaults to False)

If True, the node will spawn a new (private) copy of I2P at startup, and will kill it at shutdown. The new
I2P will be given a persistent state directory under NODEDIR/private/, where I2P’s microdescriptors
will be cached, to speed up subsequent startup. The daemon will allocate its own SAM port, which will
be queried from the config directory.

26 Chapter 5. Configuring a Tahoe-LAFS node

Tahoe-LAFS Documentation, Release 1.x

i2p.configdir = (string, optional, directory)

This tells the node to parse an I2P config file in the given directory, and use the SAM port it finds there.
If launch = True, the new I2P daemon will be told to use the given directory (which can be pre-
populated with a suitable config file). If launch = False, we assume there is a pre-running 12P
daemon running from this directory, and can again parse the config file for the SAM port.

i2p.executable = (string, optional, defaults to empty)

This controls which I2P executable is used when launch = True. If empty, the first executable pro-
gram named i2p found on $PATH will be used.

5.4 Client Configuration

[client]
introducer.furl = (FURL string, mandatory)

This FURL tells the client how to connect to the introducer. Each Tahoe-LAFS grid is defined by an
introducer. The introducer’s FURL is created by the introducer node and written into its private base
directory when it starts, whereupon it should be published to everyone who wishes to attach a client to
that grid

helper.furl = (FURL string, optional)

If provided, the node will attempt to connect to and use the given helper for uploads. See The Tahoe
Upload Helper for details.

stats_gatherer.furl = (FURL string, optional)
If provided, the node will connect to the given stats gatherer and provide it with operational statistics.
shares.needed = (int, optional) aka "k", default 3
shares.total = (int, optional) aka "N", N >= k, default 10
shares.happy = (int, optional) 1 <= happy <= N, default 7

These three values set the default encoding parameters. Each time a new file is uploaded, erasure-coding
is used to break the ciphertext into separate shares. There will be N (i.e. shares.total) shares created,
and the file will be recoverable if any k (i.e. shares.needed) shares are retrieved. The default values
are 3-of-10 (i.e. shares.needed = 3, shares.total = 10). Setting k to 1 is equivalent to
simple replication (uploading N copies of the file).

These values control the tradeoff between storage overhead and reliability. To a first approximation, a
IMB file will use (IMB * N/k) of backend storage space (the actual value will be a bit more, because
of other forms of overhead). Up to N-k shares can be lost before the file becomes unrecoverable. So
large N/k ratios are more reliable, and small N/k ratios use less disk space. N cannot be larger than 256,
because of the 8-bit erasure-coding algorithm that Tahoe-LAFS uses. k can not be greater than N. See
Performance costs for some common operations for more details.

shares.happy allows you control over how well to “spread out” the shares of an immutable file.
For a successful upload, shares are guaranteed to be initially placed on at least shares . happy distinct
servers, the correct functioning of any k of which is sufficient to guarantee the availability of the uploaded
file. This value should not be larger than the number of servers on your grid.

A value of shares.happy <= k is allowed, but this is not guaranteed to provide any redundancy if
some servers fail or lose shares. It may still provide redundancy in practice if N is greater than the number
of connected servers, because in that case there will typically be more than one share on at least some

5.4. Client Configuration 27

Tahoe-LAFS Documentation, Release 1.x

storage nodes. However, since a successful upload only guarantees that at least shares . happy shares
have been stored, the worst case is still that there is no redundancy.

(Mutable files use a different share placement algorithm that does not currently consider this parameter.)
mutable.format = sdmf or mdmf

This value tells Tahoe-LAFS what the default mutable file format should be. If mutable.
format=sdmf, then newly created mutable files will be in the old SDMF format. This is desirable
for clients that operate on grids where some peers run older versions of Tahoe-LAFS, as these older
versions cannot read the new MDMF mutable file format. If mutable. format is mdmf, then newly
created mutable files will use the new MDMF format, which supports efficient in-place modification and
streaming downloads. You can overwrite this value using a special mutable-type parameter in the webapi.
If you do not specify a value here, Tahoe-LAFS will use SDMF for all newly-created mutable files.

Note that this parameter applies only to files, not to directories. Mutable directories, which are stored in
mutable files, are not controlled by this parameter and will always use SDMF. We may revisit this decision
in future versions of Tahoe-LAFS.

See Mutable Files for details about mutable file formats.
peers.preferred = (string, optional)

This is an optional comma-separated list of Node IDs of servers that will be tried first when selecting
storage servers for reading or writing.

Servers should be identified here by their Node ID as it appears in the web ui, underneath the server’s
nickname. For storage servers running tahoe versions >=1.10 (if the introducer is also running tahoe
>=1.10) this will be a “Node Key” (which is prefixed with ‘v0-‘). For older nodes, it will be a TubID
instead. When a preferred server (and/or the introducer) is upgraded to 1.10 or later, clients must adjust
their configs accordingly.

Every node selected for upload, whether preferred or not, will still receive the same number of shares
(one, if there are N or more servers accepting uploads). Preferred nodes are simply moved to the front of
the server selection lists computed for each file.

This is useful if a subset of your nodes have different availability or connectivity characteristics than the
rest of the grid. For instance, if there are more than N servers on the grid, and K or more of them are at
a single physical location, it would make sense for clients at that location to prefer their local servers so
that they can maintain access to all of their uploads without using the internet.

In addition, see Storage Server Donations for a convention for donating to storage server operators.

5.5 Frontend Configuration

The Tahoe-LAFS client process can run a variety of frontend file access protocols. You will use these to create and
retrieve files from the Tahoe-LAFS file store. Configuration details for each are documented in the following protocol-
specific guides:

HTTP

Tahoe runs a webserver by default on port 3456. This interface provides a human-oriented “WUI”, with
pages to create, modify, and browse directories and files, as well as a number of pages to check on the
status of your Tahoe node. It also provides a machine-oriented “WAPI”, with a REST-ful HTTP interface
that can be used by other programs (including the CLI tools). Please see The Tahoe REST-ful Web API
for full details, and the web.port and web.static config variables above. Download status also
describes a few WUI status pages.

CLI

28 Chapter 5. Configuring a Tahoe-LAFS node

Tahoe-LAFS Documentation, Release 1.x

The main tahoe executable includes subcommands for manipulating the file store, upload-
ing/downloading files, and creating/running Tahoe nodes. See The Tahoe-LAFS CLI commands for details.

SFTP, FTP

Tahoe can also run both SFTP and FTP servers, and map a username/password pair to a top-level Tahoe
directory. See Tahoe-LAFS SFTP and FTP Frontends for instructions on configuring these services, and
the [sftpd] and [ftpd] sections of tahoe.cfq.

5.6 Storage Server Configuration

[storage]
enabled = (boolean, optional)

If this is True, the node will run a storage server, offering space to other clients. If it is False, the node
will not run a storage server, meaning that no shares will be stored on this node. Use False for clients
who do not wish to provide storage service. The default value is True.

anonymous = (boolean, optional)

If this is True, the node will expose the storage server via Foolscap without any additional authentication
or authorization. The capability to use all storage services is conferred by knowledge of the Foolscap
fURL for the storage server which will be included in the storage server’s announcement. If it is False,
the node will not expose this and storage must be exposed using the storage server plugin system (see
Storage Server Plugin Configuration for details). The default value is True.

readonly = (boolean, optional)

If True, the node will run a storage server but will not accept any shares, making it effectively read-only.
Use this for storage servers that are being decommissioned: the storage/ directory could be mounted
read-only, while shares are moved to other servers. Note that this currently only affects immutable shares.
Mutable shares (used for directories) will be written and modified anyway. See ticket #390 for the current
status of this bug. The default value is False.

reserved_space = (str, optional)

If provided, this value defines how much disk space is reserved: the storage server will not accept any
share that causes the amount of free disk space to drop below this value. (The free space is measured by a
call to statvfs (2) on Unix, or GetDiskFreeSpaceEx on Windows, and is the space available to
the user account under which the storage server runs.)

This string contains a number, with an optional case-insensitive scale suffix, optionally followed by “B”

733

or “iB”. The supported scale suffixes are “K”, “M”, “G”, “T”, “P” and “E”, and a following “i” indicates
to use powers of 1024 rather than 1000. So “100MB”, “100 M”, “100000000B”, “100000000”, and
“100000kb” all mean the same thing. Likewise, “1MiB”, “1024KiB”, “1024 Ki”, and “1048576 B” all
mean the same thing.

“tahoe create-node” generates a tahoe.cfg with “reserved_space=1G”, but you may wish to
raise, lower, or remove the reservation to suit your needs.

expire.enabled =

expire.mode =
expire.override_lease_duration =
expire.cutoff_date =

expire.immutable =

5.6. Storage Server Configuration 29

https://tahoe-lafs.org/trac/tahoe-lafs/ticket/390

Tahoe-LAFS Documentation, Release 1.x

expire.mutable =

These settings control garbage collection, in which the server will delete shares that no longer have an
up-to-date lease on them. Please see Garbage Collection in Tahoe for full details.

storage_dir = (string, optional)
This specifies a directory where share files and other state pertaining to storage servers will be kept.

The default value is the st orage directory in the node’s base directory (i.e. BASEDIR/storage), but
it can be placed elsewhere. Relative paths will be interpreted relative to the node’s base directory.

In addition, see Storage Server Donations for a convention encouraging donations to storage server operators.

5.7 Storage Server Plugin Configuration

In addition to the built-in storage server, it is also possible to load and configure storage server plugins into Tahoe-
LAFS.

Plugins to load are specified in the [storage] section.
plugins = (string, optional)

This gives a comma-separated list of plugin names. Plugins named here will be loaded and offered to
clients. The default is for no such plugins to be loaded.

Each plugin can also be configured in a dedicated section. The section for each plugin is named after the plugin itself:

[storageserver.plugins.<plugin name>]

For example, the configuration section for a plugin named acme-foo-vl is [storageserver.plugins.
acme—foo-vl].

The contents of such sections are defined by the plugins themselves. Refer to the documentation provided with those
plugins.

5.8 Running A Helper

A “helper” is a regular client node that also offers the “upload helper” service.
[helper]
enabled = (boolean, optional)

If True, the node will run a helper (see The Tahoe Upload Helper for details). The helper’s contact FURL
will be placed in private/helper. furl, from which it can be copied to any clients that wish to use
it. Clearly nodes should not both run a helper and attempt to use one: do not create helper.furl and
also define [helper]enabled in the same node. The default is False.

30 Chapter 5. Configuring a Tahoe-LAFS node

Tahoe-LAFS Documentation, Release 1.x

5.9 Running An Introducer

The introducer node uses a different . tac file (named “introducer.tac”), and pays attention to the [node]
section, but not the others.

The Introducer node maintains some different state than regular client nodes.
BASEDIR/private/introducer. furl

This is generated the first time the introducer node is started, and used again on subsequent runs, to give
the introduction service a persistent long-term identity. This file should be published and copied into new
client nodes before they are started for the first time.

5.10 Other Files in BASEDIR

Some configuration is not kept in tahoe . cfg, for the following reasons:
* it doesn’t fit into the INI format of tahoe.cfg (e.g. private/servers.yaml)
* it is generated by the node at startup, e.g. encryption keys. The node never writes to tahoe.cfg.
* it is generated by user action, e.g. the “tahoe create-alias” command.
In addition, non-configuration persistent state is kept in the node’s base directory, next to the configuration knobs.
This section describes these other files.
private/node.pem

This contains an SSL private-key certificate. The node generates this the first time it is started, and re-uses
it on subsequent runs. This certificate allows the node to have a cryptographically-strong identifier (the
Foolscap “TubID”), and to establish secure connections to other nodes.

storage/

Nodes that host StorageServers will create this directory to hold shares of files on behalf of other clients.
There will be a directory underneath it for each StorageIndex for which this node is holding shares. There
is also an “incoming” directory where partially-completed shares are held while they are being received.
This location may be overridden in tahoe . cfg.

tahoe-client.tac

This file defines the client, by constructing the actual Client instance each time the node is started.
It is used by the “twistd” daemonization program (in the —y mode), which is run internally by
the “tahoe start” command. This file is created by the “tahoe create-node” or “tahoe
create-client” commands.

tahoe-introducer.tac

This file is used to construct an introducer, and is created by the “tahoe create—-introducer”
command.

tahoe-stats—gatherer.tac

This file is wused to construct a statistics gatherer, and is created by the “tahoe
create-stats—gatherer” command.

private/control. furl

This file contains a FURL that provides access to a control port on the client node, from which files can
be uploaded and downloaded. This file is created with permissions that prevent anyone else from reading

5.9. Running An Introducer 31

Tahoe-LAFS Documentation, Release 1.x

it (on operating systems that support such a concept), to insure that only the owner of the client node can
use this feature. This port is intended for debugging and testing use.

private/logport.furl

This file contains a FURL that provides access to a ‘log port’ on the client node, from which operational
logs can be retrieved. Do not grant logport access to strangers, because occasionally secret information
may be placed in the logs.

private/helper. furl

If the node is running a helper (for use by other clients), its contact FURL will be placed here. See The
Tahoe Upload Helper for more details.

private/root_dir.cap (optional)

The command-line tools will read a directory cap out of this file and use it, if you don’t specify a ‘—dir-cap’
option or if you specify ‘—dir-cap=root’.

private/convergence (automatically generated)

An added secret for encrypting immutable files. Everyone who has this same string in their private/
convergence file encrypts their immutable files in the same way when uploading them. This causes
identical files to “converge” — to share the same storage space since they have identical ciphertext — which
conserves space and optimizes upload time, but it also exposes file contents to the possibility of a brute-
force attack by people who know that string. In this attack, if the attacker can guess most of the contents
of a file, then they can use brute-force to learn the remaining contents.

So the set of people who know your private/convergence string is the set of people who converge
their storage space with you when you and they upload identical immutable files, and it is also the set of
people who could mount such an attack.

The content of the private/convergence file is a base-32 encoded string. If the file doesn’t exist,
then when the Tahoe-LAFS client starts up it will generate a random 256-bit string and write the base-32
encoding of this string into the file. If you want to converge your immutable files with as many people as
possible, put the empty string (so that private/convergence is a zero-length file).

5.11 Additional Introducer Definitions

The private/introducers.yaml file defines additional Introducers. The first introducer is defined in tahoe.
cfg,in [client] introducer.furl. To use two or more Introducers, choose a locally-unique “petname” for
each one, then define their FURLs in private/introducers.yaml like this:

introducers:

petname?2:
furl: FURL2

petname3:
furl: FURL3

Servers will announce themselves to all configured introducers. Clients will merge the announcements they receive
from all introducers. Nothing will re-broadcast an announcement (i.e. telling introducer 2 about something you heard
from introducer 1).

If you omit the introducer definitions from both tahoe.cfg and introducers.yaml, the node will not use an
Introducer at all. Such “introducerless” clients must be configured with static servers (described below), or they will
not be able to upload and download files.

32 Chapter 5. Configuring a Tahoe-LAFS node

Tahoe-LAFS Documentation, Release 1.x

5.12 Static Server Definitions

The private/servers.yaml file defines “static servers”: those which are not announced through the Introducer.
This can also control how we connect to those servers.

Most clients do not need this file. It is only necessary if you want to use servers which are (for some specialized
reason) not announced through the Introducer, or to connect to those servers in different ways. You might do this to
“freeze” the server list: use the Introducer for a while, then copy all announcements into servers.yaml, then stop
using the Introducer entirely. Or you might have a private server that you don’t want other users to learn about (via the
Introducer). Or you might run a local server which is announced to everyone else as a Tor onion address, but which
you can connect to directly (via TCP).

The file syntax is YAML, with a top-level dictionary named st orage. Other items may be added in the future.

The st orage dictionary takes keys which are server-ids, and values which are dictionaries with two keys: ann and
connections. The ann value is a dictionary which will be used in lieu of the introducer announcement, so it can
be populated by copying the ann dictionary from NODEDIR/introducer_cache.yaml.

The server-id can be any string, but ideally you should use the public key as published by the server. Each server
displays this as “Node ID:” in the top-right corner of its “WUI” web welcome page. It can also be obtained from other
client nodes, which record it as key_s: in their introducer_cache.yaml file. The format is “v0-" followed
by 52 base32 characters like so:

v0-c2ng2pbrmxmlwpijn3mr72ckk5fmzk6uxfénhowyosaubrt 6y5mg

The ann dictionary really only needs one key:

* anonymous-storage-FURL: how we connect to the server
(note that other important keys may be added in the future, as Accounting and HTTP-based servers are implemented)
Optional keys include:

* nickname: the name of this server, as displayed on the Welcome page server list

* permutation-seed-base32: this controls how shares are mapped to servers. This is normally computed
from the server-ID, but can be overridden to maintain the mapping for older servers which used to use Foolscap
TubIDs as server-IDs. If your selected server-ID cannot be parsed as a public key, it will be hashed to compute
the permutation seed. This is fine as long as all clients use the same thing, but if they don’t, then your client
will disagree with the other clients about which servers should hold each share. This will slow downloads for
everybody, and may cause additional work or consume extra storage when repair operations don’t converge.

* anything else from the introducer_cache.yaml announcement, like my-version, which is displayed
on the Welcome page server list

For example, a private static server could be defined with a private/servers.yamnl file like this:

storage:
v0-4uazse3xbouubgpkb7tel2bmébpead jhuigdhgcuvvse7hugtsia:
ann:
nickname: my-server-1
anonymous—-storage—-FURL: pb://u33mé4y7klhz3bypswgkozwetvabelhxt@tcp:8.8.8.8:51298/
—eiu2i7p6démmd4ihmss7ieoubhac3wnéb

Or, if you’re feeling really lazy:

storage:
my-serverid-1:
ann:
anonymous—-storage-FURL: pb://u33mdy7klhz3bypswgkozwetvabelhxt@tcp:8.8.8.8:51298/
—eiu2i7pb6dbmm4ihmss7ieouShac3wn6éb (continues on next page)

5.12. Static Server Definitions 33

http://yaml.org/

Tahoe-LAFS Documentation, Release 1.x

(continued from previous page)

|

5.12.1 Overriding Connection-Handlers for Static Servers

A connections entry will override the default connection-handler mapping (as established by tahoe.cfg
[connections]). This can be used to build a “Tor-mostly client”: one which is restricted to use Tor for all con-
nections, except for a few private servers to which normal TCP connections will be made. To override the published
announcement (and thus avoid connecting twice to the same server), the server ID must exactly match.

tahoe.cfqg:

[connections]
this forces the use of Tor for all "tcp" hints
tcp = tor

private/servers.yaml:

storage:
v0-c2ng2pbrmxmlwpijn3mr72ckk5fmzk6uxfbonhowyosaubrt6ybmqg:
ann:
nickname: my-server-1
anonymous-storage-FURL: pb://u33mdy7klhz3bypswgkozwetvabelhxt@tcp:10.1.2.
—3:51298/eiu2i7p6domm4ihmss7ieouShac3wn6b
connections:
this overrides the tcp=tor from tahoe.cfg, for just this server
tcp: tcp

The connections table is needed to override the tcp = tor mapping that comes from tahoe.cfg. Without
it, the client would attempt to use Tor to connect to 10.1 .2 .3, which would fail because it is a local/non-routeable
(RFC1918) address.

5.13 Other files

logs/

Each Tahoe-LAFS node creates a directory to hold the log messages produced as the node runs. These
logfiles are created and rotated by the “twistd” daemonization program, so logs/twistd.log
will contain the most recent messages, Logs/twistd.log.1 will contain the previous ones, Logs/
twistd.log.2 will be older still, and so on. twistd rotates logfiles after they grow beyond 1MB in
size. If the space consumed by logfiles becomes troublesome, they should be pruned: a cron job to delete
all files that were created more than a month ago in this 1ogs/ directory should be sufficient.

my_nodeid

this is written by all nodes after startup, and contains a base32-encoded (i.e. human-readable) NodeID
that identifies this specific node. This NodelD is the same string that gets displayed on the web page (in
the “which peers am I connected to” list), and the shortened form (the first few characters) is recorded in
various log messages.

access.blacklist

Gateway nodes may find it necessary to prohibit access to certain files. The web-API has a facility to
block access to filecaps by their storage index, returning a 403 “Forbidden” error instead of the original
file. For more details, see the “Access Blacklist” section of The Tahoe REST-ful Web API.

34 Chapter 5. Configuring a Tahoe-LAFS node

Tahoe-LAFS Documentation, Release 1.x

5.14 Example

The following is a sample tahoe . cfg file, containing values for some of the keys described in the previous section.
Note that this is not a recommended configuration (most of these are not the default values), merely a legal one.

[node]

nickname = Bob's Tahoe-LAFS Node

tub.port = tcp:34912

tub.location = tcp:123.45.67.89:8098,tcp:44.55.66.77:8098

web.port = tcp:3456

log_gatherer.furl = pb://sokljdy7eok5c3xkmjeqpwl192.168.69.247:44801/egpwgtzm

timeout.keepalive = 240
timeout.disconnect = 1800
[client]

introducer.furl = pb://ok45ssokljdyT7eok5c3xkmj@tcp:tahoe.example:44801/1ii3uumo
helper.furl = pb://ggtibSssokljdy7eok5c3xkmj@tcp:helper.tahoe.example:7054/kk81lhr

[storage]

enabled = True

readonly = True
reserved_space = 10000000000

[helper]
enabled = True

5.15 Old Configuration Files

Tahoe-LAFS releases before v1.3.0 had no tahoe. cfg file, and used distinct files for each item. This is no longer
supported and if you have configuration in the old format you must manually convert it to the new format for Tahoe-
LAFS to detect it. See Old Configuration Files.

5.14. Example 35

Tahoe-LAFS Documentation, Release 1.x

36 Chapter 5. Configuring a Tahoe-LAFS node

CHAPTER
SIX

TAHOE-LAFS ARCHITECTURE

—

Overview

The Key-Value Store

File Encoding

Capabilities

Server Selection

Swarming Download, Trickling Upload
The File Store Layer

Leases, Refreshing, Garbage Collection

File Repairer

© Y ® =N 0k WD

—

Security

[
—

. Reliability

6.1 Overview

(See the docs/specifications directory for more details.)
There are three layers: the key-value store, the file store, and the application.

The lowest layer is the key-value store. The keys are “capabilities” — short ASCII strings — and the values are sequences
of data bytes. This data is encrypted and distributed across a number of nodes, such that it will survive the loss of most
of the nodes. There are no hard limits on the size of the values, but there may be performance issues with extremely
large values (just due to the limitation of network bandwidth). In practice, values as small as a few bytes and as large
as tens of gigabytes are in common use.

The middle layer is the decentralized file store: a directed graph in which the intermediate nodes are directories and
the leaf nodes are files. The leaf nodes contain only the data — they contain no metadata other than the length in bytes.
The edges leading to leaf nodes have metadata attached to them about the file they point to. Therefore, the same file
may be associated with different metadata if it is referred to through different edges.

The top layer consists of the applications using the file store. Allmydata.com used it for a backup service: the appli-
cation periodically copies files from the local disk onto the decentralized file store. We later provide read-only access
to those files, allowing users to recover them. There are several other applications built on top of the Tahoe-LAFS file
store (see the RelatedProjects page of the wiki for a list).

37

https://github.com/tahoe-lafs/tahoe-lafs/tree/master/docs/specifications
https://tahoe-lafs.org/trac/tahoe-lafs/wiki/RelatedProjects

Tahoe-LAFS Documentation, Release 1.x

6.2 The Key-Value Store

The key-value store is implemented by a grid of Tahoe-LAFS storage servers — user-space processes. Tahoe-LAFS
storage clients communicate with the storage servers over TCP.

Storage servers hold data in the form of “shares”. Shares are encoded pieces of files. There are a configurable number
of shares for each file, 10 by default. Normally, each share is stored on a separate server, but in some cases a single
server can hold multiple shares of a file.

Nodes learn about each other through an “introducer”. Each server connects to the introducer at startup and announces
its presence. Each client connects to the introducer at startup, and receives a list of all servers from it. Each client then
connects to every server, creating a “bi-clique” topology. In the current release, nodes behind NAT boxes will connect
to all nodes that they can open connections to, but they cannot open connections to other nodes behind NAT boxes.
Therefore, the more nodes behind NAT boxes, the less the topology resembles the intended bi-clique topology.

The introducer is a Single Point of Failure (“SPoF”), in that clients who never connect to the introducer will be unable
to connect to any storage servers, but once a client has been introduced to everybody, it does not need the introducer
again until it is restarted. The danger of a SPoF is further reduced in two ways. First, the introducer is defined by a
hostname and a private key, which are easy to move to a new host in case the original one suffers an unrecoverable
hardware problem. Second, even if the private key is lost, clients can be reconfigured to use a new introducer.

For future releases, we have plans to decentralize introduction, allowing any server to tell a new client about all the
others.

6.3 File Encoding

When a client stores a file on the grid, it first encrypts the file. It then breaks the encrypted file into small segments,
in order to reduce the memory footprint, and to decrease the lag between initiating a download and receiving the first
part of the file; for example the lag between hitting “play” and a movie actually starting.

The client then erasure-codes each segment, producing blocks of which only a subset are needed to reconstruct the
segment (3 out of 10, with the default settings).

It sends one block from each segment to a given server. The set of blocks on a given server constitutes a “share”.
Therefore a subset of the shares (3 out of 10, by default) are needed to reconstruct the file.

A hash of the encryption key is used to form the “storage index”, which is used for both server selection (described
below) and to index shares within the Storage Servers on the selected nodes.

The client computes secure hashes of the ciphertext and of the shares. It uses Merkle Trees so that it is possible to
verify the correctness of a subset of the data without requiring all of the data. For example, this allows you to verify
the correctness of the first segment of a movie file and then begin playing the movie file in your movie viewer before
the entire movie file has been downloaded.

These hashes are stored in a small datastructure named the Capability Extension Block which is stored on the storage
servers alongside each share.

The capability contains the encryption key, the hash of the Capability Extension Block, and any encoding parameters
necessary to perform the eventual decoding process. For convenience, it also contains the size of the file being stored.

To download, the client that wishes to turn a capability into a sequence of bytes will obtain the blocks from storage
servers, use erasure-decoding to turn them into segments of ciphertext, use the decryption key to convert that into
plaintext, then emit the plaintext bytes to the output target.

38 Chapter 6. Tahoe-LAFS Architecture

http://systems.cs.colorado.edu/grunwald/Classes/Fall2003-InformationStorage/Papers/merkle-tree.pdf

Tahoe-LAFS Documentation, Release 1.x

6.4 Capabilities

Capabilities to immutable files represent a specific set of bytes. Think of it like a hash function: you feed in a bunch
of bytes, and you get out a capability, which is deterministically derived from the input data: changing even one bit of
the input data will result in a completely different capability.

Read-only capabilities to mutable files represent the ability to get a set of bytes representing some version of the file,
most likely the latest version. Each read-only capability is unique. In fact, each mutable file has a unique public/private
key pair created when the mutable file is created, and the read-only capability to that file includes a secure hash of the
public key.

Read-write capabilities to mutable files represent the ability to read the file (just like a read-only capability) and also to
write a new version of the file, overwriting any extant version. Read-write capabilities are unique — each one includes
the secure hash of the private key associated with that mutable file.

The capability provides both “location” and “identification”: you can use it to retrieve a set of bytes, and then you can
use it to validate (“identify”) that these potential bytes are indeed the ones that you were looking for.

The “key-value store” layer doesn’t include human-meaningful names. Capabilities sit on the “global+secure” edge
of Zooko’s Triangle. They are self-authenticating, meaning that nobody can trick you into accepting a file that doesn’t
match the capability you used to refer to that file. The file store layer (described below) adds human-meaningful names
atop the key-value layer.

6.5 Server Selection

When a file is uploaded, the encoded shares are sent to some servers. But to which ones? The “server selection”
algorithm is used to make this choice.

The storage index is used to consistently-permute the set of all servers nodes (by sorting them by
HASH (storage_index+nodeid)). Each file gets a different permutation, which (on average) will evenly dis-
tribute shares among the grid and avoid hotspots. Each server has announced its available space when it connected to
the introducer, and we use that available space information to remove any servers that cannot hold an encoded share
for our file. Then we ask some of the servers thus removed if they are already holding any encoded shares for our file;
we use this information later. (We ask any servers which are in the first 2*"N"" elements of the permuted list.)

We then use the permuted list of servers to ask each server, in turn, if it will hold a share for us (a share that was not
reported as being already present when we talked to the full servers earlier, and that we have not already planned to
upload to a different server). We plan to send a share to a server by sending an ‘allocate_buckets() query’ to the server
with the number of that share. Some will say yes they can hold that share, others (those who have become full since
they announced their available space) will say no; when a server refuses our request, we take that share to the next
server on the list. In the response to allocate_buckets() the server will also inform us of any shares of that file that it
already has. We keep going until we run out of shares that need to be stored. At the end of the process, we’ll have a
table that maps each share number to a server, and then we can begin the encode and push phase, using the table to
decide where each share should be sent.

Most of the time, this will result in one share per server, which gives us maximum reliability. If there are fewer writable
servers than there are unstored shares, we’ll be forced to loop around, eventually giving multiple shares to a single
server.

If we have to loop through the node list a second time, we accelerate the query process, by asking each node to hold
multiple shares on the second pass. In most cases, this means we’ll never send more than two queries to any given
node.

If a server is unreachable, or has an error, or refuses to accept any of our shares, we remove it from the permuted
list, so we won’t query it again for this file. If a server already has shares for the file we’re uploading, we add that

6.4. Capabilities 39

https://en.wikipedia.org/wiki/Zooko%27s_triangle

Tahoe-LAFS Documentation, Release 1.x

information to the share-to-server table. This lets us do less work for files which have been uploaded once before,
while making sure we still wind up with as many shares as we desire.

Before a file upload is called successful, it has to pass an upload health check. For immutable files, we check to
see that a condition called ‘servers-of-happiness’ is satisfied. When satisfied, ‘servers-of-happiness’ assures us that
enough pieces of the file are distributed across enough servers on the grid to ensure that the availability of the file will
not be affected if a few of those servers later fail. For mutable files and directories, we check to see that all of the
encoded shares generated during the upload process were successfully placed on the grid. This is a weaker check than
‘servers-of-happiness’; it does not consider any information about how the encoded shares are placed on the grid, and
cannot detect situations in which all or a majority of the encoded shares generated during the upload process reside on
only one storage server. We hope to extend ‘servers-of-happiness’ to mutable files in a future release of Tahoe-LAFS.
If, at the end of the upload process, the appropriate upload health check fails, the upload is considered a failure.

The current defaults use k = 3, servers_of_happiness =7, and N = 10. N = 10 means that we’ll try to place
10 shares. k = 3 means that we need any three shares to recover the file. servers_of_happiness =7 means
that we’ll consider an immutable file upload to be successful if we can place shares on enough servers that there are 7
different servers, the correct functioning of any k of which guarantee the availability of the immutable file.

N =10 and k = 3 means there is a 3.3x expansion factor. On a small grid, you should set N about equal to the number of
storage servers in your grid; on a large grid, you might set it to something smaller to avoid the overhead of contacting
every server to place a file. In either case, you should then set k such that N/k reflects your desired availability goals.
The best value for servers_of_happiness will depend on how you use Tahoe-LAFS. In a friendnet with a
variable number of servers, it might make sense to set it to the smallest number of servers that you expect to have
online and accepting shares at any given time. In a stable environment without much server churn, it may make sense
to set servers_of_happiness =N.

When downloading a file, the current version just asks all known servers for any shares they might have. Once it has
received enough responses that it knows where to find the needed k shares, it downloads at least the first segment from
those servers. This means that it tends to download shares from the fastest servers. If some servers had more than one
share, it will continue sending “Do You Have Block™ requests to other servers, so that it can download subsequent
segments from distinct servers (sorted by their DYHB round-trip times), if possible.

Sfuture work

A future release will use the server selection algorithm to reduce the number of queries that must be sent
out.

Other peer-node selection algorithms are possible. One earlier version (known as “Tahoe 3”) used the
permutation to place the nodes around a large ring, distributed the shares evenly around the same ring,
then walked clockwise from O with a basket. Each time it encountered a share, it put it in the basket,
each time it encountered a server, give it as many shares from the basket as they’d accept. This reduced
the number of queries (usually to 1) for small grids (where N is larger than the number of nodes), but
resulted in extremely non-uniform share distribution, which significantly hurt reliability (sometimes the
permutation resulted in most of the shares being dumped on a single node).

Another algorithm (known as “denver airport”') uses the permuted hash to decide on an approximate
target for each share, then sends lease requests via Chord routing. The request includes the contact
information of the uploading node, and asks that the node which eventually accepts the lease should
contact the uploader directly. The shares are then transferred over direct connections rather than through
multiple Chord hops. Download uses the same approach. This allows nodes to avoid maintaining a large
number of long-term connections, at the expense of complexity and latency.

I all of these names are derived from the location where they were concocted, in this case in a car ride from Boulder to DEN. To be precise,
“Tahoe 1” was an unworkable scheme in which everyone who holds shares for a given file would form a sort of cabal which kept track of all
the others, “Tahoe 2” is the first-100-nodes in the permuted hash described in this document, and “Tahoe 3” (or perhaps “Potrero hill 1”’) was the
abandoned ring-with-many-hands