Tahoe-LAFS Documentation
Release 1.x

The Tahoe-LAFS Developers

Mar 04, 2021

CONTENTS

Welcome to Tahoe-LAFS! 3
1.1 ~ Whatis Tahoe-LAFS? e e e 3
1.2 What is “provider-independent security”™? L 3
1.3 Access Control L e e e e e e 4
1.4 GetStarted e e 4
1.5 LICENSE v i e e e e e e e e e 5
Installing Tahoe-LAFS 7
2.1 First: InCase Of Trouble e e 7
2.2 Pre-Packaged Versions L e e e e e e e 7
2.3 Preliminaries o . e e e e e e e e e e e e e e e 7
2.4 Install the Latest Tahoe-LAFS Release 9
2.5 Runningthe tahoeexecutable 11
2.6 Runningthe Self-Tests o i e e e e e e e e 12
2.7 CommonProblems e e 12
2.8 Using Tahoe-LAFS o . e 13
How To Run Tahoe-LAFS 15
3.1 IntroducCtion e e e e e e e e e e e e 15
3.2 Do Stuff WithIt o e 17
3.3 Socialize e e e e e e e 18
34 Complain oL e e 18
Magic Wormbhole Invites 19
4.1 MagicWormhole 19
42 Invitesand JOINS L L e e e e e e e e 19
4.3 Tahoe-LAFS Secret Exchange e e e 19
Configuring a Tahoe-LAFS node 21
5.0 NodeTyPes . . o o v v vt e e e e e e 22
5.2 Overall Node Configuration v v i i i it it e e e e e e e e 22
5.3 Connection Management v vttt e e e e e e e e e e e e e e e e e e 26
5.4 Client Configuration 0 i i it e e e e e e e e e e e 29
5.5 Frontend Configuration e e e e e e e e 30
5.6 Storage Server Configuration e e 31
5.7 Storage Server Plugin Configuration i e e e 32
5.8 Running AHelper e e e e 32
5.9 Running AnlIntroducer L e e e e 33
5.10 Other Filesin BASEDIR e 33
5.11 Introducer Definitions e 34

5.12 Static Server Definitions e e e e e e e e e e

513 Otherfiles
S5.14 Exampleo e e e e e e e e e e e e
5.15 Old Configuration Files e
Tahoe-LAFS Architecture

6.1 OVerview
6.2 The Key-Value Store L o L e e e e e e
6.3 FileEncoding. L e
6.4 Capabilities e e e e e e e e e e e e e
6.5 Server Selection e
6.6 Swarming Download, Trickling Upload
6.7 TheFile Store Layer e
6.8 Leases, Refreshing, Garbage Collection i
6.9 FileRepairer e e
6.10 Security e e e e e e e e e e e e
6.11 Reliability e e e
The Tahoe-LAFS CLI commands

TL OVEIVIEW . . o oo i e e e e e e
7.2 CLICommand OVErVIEW i i ittt et ettt e e e e e e
7.3 Node Management e e e
7.4 File Store Manipulation e e e e e e e e e e
7.5 Storage Grid Maintenance i it e e e e e e e e e e e e
7.6 Debugging e e e e e e e e e e
The Tahoe REST-ful Web API

8.1 Enabling the web-APIport e
8.2 Basic Concepts: GET, PUT, DELETE, POST it
83 URLs
8.4 Slow Operations, Progress, and Cancelling,
8.5 Programmatic Operations i i i e e e e e e e e e e e
8.6 Browser Operations: Human-oriented interfaces,
8.7 Other Useful Pages e e e e e e e e e
8.8 Static Filesin/public_html. e
8.9 Safety and Security Issues—Names vs. URIs L .
8.10 Concurrency ISSUES L L e e e e e e e
8.11 Access Blacklist e e
8.12 URLsand HTTPand UTF-8 e e e e
Tahoe-LAFS SFTP Frontend

9.1 SFTPBackground e
9.2 Tahoe-LAFS Support. o o e e e e e e e e e e e
9.3 Creatingan AccountFile o e e
9.4 Running An Account Server (accounts.url) Lo
9.5 Configuring SFTP Access e
9.6 Dependencies i e e e
9.7 Immutable and Mutable Files
9.8 Knownlssues.

10 Download status

10.1 Introduction L e e e e e e
10.2 What’sinvolved inadownload?
10.3 Data on the download-status page e e

39
39
40
40
41
41
43
43
44
44
45
45

47
47
47
48
49
55
55

57
58
58
59
61
62
71
83
86
87
&7
88
89

91
91
91
92
92
93
94
94
94

95
95
95
96

11

12

13

14

15

16

17

18

19

20

21

22

23

Known Issues

11.1 Known Issues in Tahoe-LAFS v1.10.3, released 30-Mar-2016
11.2 Known Issues in Tahoe-LAFS v1.9.0, released 31-Oct-2011
11.3 Known Issues in Tahoe-LAFS v1.8.2, released 30-Jan-2011

Contributing to Tahoe-LAFS
Contributor Code of Conduct

Release Checklist

14.1 Any Contributor L e e e e
14.2 Privileged Contributoro e e e
14.3 Announcing the Release e e e

How To Configure A Server

15.1 Manual Configuration 0 i i e e e e e e e e e e e e e e
15.2 Automatic Configuration o o e e e e e e e e e e e e e
15.3 Deployment SCENarios ot v i it e e e e e e e e e e

The Tahoe Upload Helper

16.1 OVervIew o o ot e e e e e e e e e e e
16.2 Setting Up AHelper e e e e
16.3 UsingaHelper e e e e e
16.4 Other Helper Modes e e

The Convergence Secret

17.1 What IsTt? o e e e e e
17.2 What If I Change My Convergence Secret?ottt ettt
173 HowToUselt e e

Garbage Collection in Tahoe

18.1 OVEIVIEW . . . o v o o e
18.2 Client-side Renewal e
18.3 Server Side EXpiration o . e e e e e e e e e e
18.4 Expiration Progress
18.5 Future Directions e e e e e e e e e e e e e e e e e

Statement on Backdoors

Donations

20.1 GOVEINANCE v v v o e e e e e e e e e e e e e e e e e e e
20.2 Transparent ACCOUNtING v i ittt e e e e e e e e e e e
20.3 Expenditure Addresseso e e e e
20.4 Historical Donation Addresses e
20.5 Validation e e e e e

Storage Server Donations

21.1 Sending Donations e e e e e
21.2 Receiving Donations e e e e
21.3 Further Reading e e e e e e

Expenses paid by donated BTC
22.1 BudgetItems e e e e e e e e e e e

Things To Be Careful About As We Venture Boldly Forth
23.1 Timing Attacks e e e e e

105

107

109
109
111
112

113
113
113
114

117
117
118
119
119

121
121
122
122

123
123
124
124
126
126

129

131
131
131
131
132
132

133
133
134
134

135
135

139

24 Avoiding Write Collisions in Tahoe

25 The Tahoe BackupDB

25.1 OVEIVIEW . . . v v i e e e e e e e e e e e e e e e e e e e
252 Schema
25.3 Upload Operation v v v i v it et e e e
25.4 Directory Operations ot

26 Developer Guide

26.1 Pre-commit Checks e

27 Using Tahoe-LAFS with an anonymizing network: Tor, I12P
27.1 OVEIVIEW . . . o v vttt s e e e e e e e
272 USECASES » v v v v v v e e e e e e e e e e e e e e
27.3 Software Dependencies o L.
27.4 Connection configurationo
27.5 Anonymity configurationo
27.6 Performance and security iSSUES e e e .

28 Node Keys in Tahoe-LAFS

28.1 Why Announcements Are Signed L.
28.2 How The Node IDIs Computed
28.3 Version Compatibility, Fallbacks For Old Versions
28.4 Share Placement

29 Performance costs for some common operations

29.1 Publishing an A-byte immutablefile
29.2 Publishing an A-byte mutable file
29.3 Downloading B bytes of an A-byte immutablefile.
29.4 Downloading B bytes of an A-byte mutablefile
29.5 Modifying B bytes of an A-byte mutablefile

29.6 Inserting/Removing B bytes in an A-byte mutable file

29.7 Adding an entry to an A-entry directory L.
29.8 Listing an Aentry directory 0oL
29.9 Checkingan A-bytefile
29.10 Verifying an A-byte file immutable)
29.11 Verifying an A-byte file (mutable)
29.12 Repairing an A-byte file (mutable or immutable)

30 Tahoe Logging

30.1 OVerview o oot e e e e
30.2 Realtime Logging
303 Incidents e e e e
30.4 Working with flogfiles L o
30.5 Gatherers
30.6 Adding log messages e e e e e e e e e
30.7 Log Messages During Unit Tests

31 Tahoe Statistics

3IL Overview e
31.2 Statistics Categorieso
31.3 Using Munin To Graph Stats Values

32 How To Build Tahoe-LAFS On A Desert Island

32.1 HowThisWorks e

141

143
143
144
144
145

147
147

149
149
149
150
151
151
153

157
157
157
158
158

159
159
160
160
161
161
161
161
162
162
162
162
163

165
165
165
166
166
166
168
168

171
171
171
174

175

33

34

35

36

37

38

39

40

41

42

Debian and Ubuntu Support
33,1 OVEIVIEW . . v vttt e e e e e e e e e e e e e e e e e
33.2 Dependency Packages e e e

Building Tahoe-LAFS on Windows

34.1 Preliminaries oo e e e e e e e e e e
342 Installation L. e e e
343 Running Tahoe-LAFS o e
34.4 Installing A Different Version e
345 Dependencies i e e e e e e e

0S-X Packaging

Building pyOpenSSL on Windows

36.1 Download and install Microsoft Visual C++ compiler for Python2.7
36.2 Download andinstall Perl oL oo
36.3 Download and install the latest OpenSSL version
36.4 Building PyOpenSSL L

Specifications

37.1 Specification Document Outline L
37.2 URLS . . o
37.3 Tahoe URIS L oL
374 FileEncoding. L e e e e e e e
37.5 URIExtension Block o o e
37.6 Mutable Files o e
37.7 Tahoe-LAFS Directory Nodes o v v i i e e e e e e e e e e e e e e
37.8 Servers of Happiness o o i i e e e e e e e e e e e
37.9 Upload Strategy of Happiness e
37.10 Redundant Array of Independent Clouds: Share To Cloud Mapping

Proposed Specifications
38.1 Leasedatabasedesign e e
38.2 Storage Node Protocol (“Great Black Swamp™, “GBS™),

Filesystem-specific notes
3001 eXIB . L

Old Configuration Files
Using Tahoe as a key-value store

Indices and tables

179
179
179

181
181
181
182
182
182

183

185
185
185
185
186

187
187
190
193
196
198
199
211
217
218
220

227
227
231

241
241

243

245

247

vi

Tahoe-LAFS Documentation, Release 1.x

Contents:

CONTENTS 1

Tahoe-LAFS Documentation, Release 1.x

2 CONTENTS

CHAPTER
ONE

WELCOME TO TAHOE-LAFS!

1.1 What is Tahoe-LAFS?

Welcome to Tahoe-LAFS, the first decentralized storage system with provider-independent security.

Tahoe-LAFS is a system that helps you to store files. You run a client program on your computer, which talks to one
or more storage servers on other computers. When you tell your client to store a file, it will encrypt that file, encode it
into multiple pieces, then spread those pieces out among multiple servers. The pieces are all encrypted and protected
against modifications. Later, when you ask your client to retrieve the file, it will find the necessary pieces, make sure
they haven’t been corrupted, reassemble them, and decrypt the result.

The client creates more pieces (or “shares”) than it will eventually need, so even if some of the servers fail, you can
still get your data back. Corrupt shares are detected and ignored, so the system can tolerate server-side hard-drive
errors. All files are encrypted (with a unique key) before uploading, so even a malicious server operator cannot read
your data. The only thing you ask of the servers is that they can (usually) provide the shares when you ask for them:
you aren’t relying upon them for confidentiality, integrity, or absolute availability.

1.2 What is “provider-independent security”?

Every seller of cloud storage services will tell you that their service is “secure”. But what they mean by that is
something fundamentally different from what we mean. What they mean by “secure” is that after you’ve given them
the power to read and modify your data, they try really hard not to let this power be abused. This turns out to be
difficult! Bugs, misconfigurations, or operator error can accidentally expose your data to another customer or to the
public, or can corrupt your data. Criminals routinely gain illicit access to corporate servers. Even more insidious is the
fact that the employees themselves sometimes violate customer privacy out of carelessness, avarice, or mere curiosity.
The most conscientious of these service providers spend considerable effort and expense trying to mitigate these risks.

What we mean by “security” is something different. The service provider never has the ability to read or modify your
data in the first place: never. If you use Tahoe-LAFS, then all of the threats described above are non-issues to you. Not
only is it easy and inexpensive for the service provider to maintain the security of your data, but in fact they couldn’t
violate its security if they tried. This is what we call provider-independent security.

This guarantee is integrated naturally into the Tahoe-LAFS storage system and doesn’t require you to perform a manual
pre-encryption step or cumbersome key management. (After all, having to do cumbersome manual operations when
storing or accessing your data would nullify one of the primary benefits of using cloud storage in the first place:
convenience.)

Here’s how it works:

https://tahoe-lafs.org

Tahoe-LAFS Documentation, Release 1.x

A “storage grid” is made up of a number of storage servers. A storage server has direct attached storage (typically one
or more hard disks). A “gateway” communicates with storage nodes, and uses them to provide access to the grid over
protocols such as HTTP(S) and SFTP.

Note that you can find “client” used to refer to gateway nodes (which act as a client to storage servers), and also to
processes or programs connecting to a gateway node and performing operations on the grid — for example, a CLI
command, Web browser, or SFTP client.

Users do not rely on storage servers to provide confidentiality nor integrity for their data — instead all of the data is
encrypted and integrity-checked by the gateway, so that the servers can neither read nor modify the contents of the
files.

Users do rely on storage servers for availability. The ciphertext is erasure-coded into N shares distributed across at
least H distinct storage servers (the default value for N is 10 and for H is 7) so that it can be recovered from any X of
these servers (the default value of K is 3). Therefore only the failure of H-K+1 (with the defaults, 5) servers can make
the data unavailable.

In the typical deployment mode each user runs her own gateway on her own machine. This way she relies on her own
machine for the confidentiality and integrity of the data.

An alternate deployment mode is that the gateway runs on a remote machine and the user connects to it over HTTPS or
SFTP. This means that the operator of the gateway can view and modify the user’s data (the user relies on the gateway
for confidentiality and integrity), but the advantage is that the user can access the Tahoe-LAFS grid with a client that
doesn’t have the gateway software installed, such as an Internet kiosk or cell phone.

1.3 Access Control

There are two kinds of files: immutable and mutable. When you upload a file to the storage grid you can choose which
kind of file it will be in the grid. Immutable files can’t be modified once they have been uploaded. A mutable file can
be modified by someone with read-write access to it. A user can have read-write access to a mutable file or read-only
access to it, or no access to it at all.

A user who has read-write access to a mutable file or directory can give another user read-write access to that file
or directory, or they can give read-only access to that file or directory. A user who has read-only access to a file or
directory can give another user read-only access to it.

When linking a file or directory into a parent directory, you can use a read-write link or a read-only link. If you use
a read-write link, then anyone who has read-write access to the parent directory can gain read-write access to the
child, and anyone who has read-only access to the parent directory can gain read-only access to the child. If you use
a read-only link, then anyone who has either read-write or read-only access to the parent directory can gain read-only
access to the child.

For more technical detail, please see the the doc page on the Wiki.

1.4 Get Started

To use Tahoe-LAFS, please see Installing Tahoe-LAFS.

4 Chapter 1. Welcome to Tahoe-LAFS!

https://tahoe-lafs.org/trac/tahoe-lafs/wiki/Doc

Tahoe-LAFS Documentation, Release 1.x

1.5 License

Tahoe-LAFS is an open-source project; please see the top-level README for details.

1.5. License 5

https://github.com/tahoe-lafs/tahoe-lafs/blob/master/README.rst

Tahoe-LAFS Documentation, Release 1.x

6 Chapter 1. Welcome to Tahoe-LAFS!

CHAPTER
TWO

INSTALLING TAHOE-LAFS

Welcome to the Tahoe-LAFS project, a secure, decentralized, fault-tolerant storage system. See Welcome to Tahoe-
LAFS! for an overview of the architecture and security properties of the system.

This procedure should work on Windows, Mac, illumos (previously OpenSolaris), and too many flavors of Linux and
of BSD to list.

2.1 First: In Case Of Trouble

In some cases these instructions may fail due to peculiarities of your platform.

If the following instructions don’t Just Work without any further effort on your part, then please write to the tahoe-dev
mailing list where friendly hackers will help you out.

2.2 Pre-Packaged Versions

You may not need to build Tahoe at all.
If you are on Windows, please see Building Tahoe-LAFS on Windows for platform-specific instructions.

If you are on a Mac, you can either follow these instructions, or use the pre-packaged bundle described in OS-X
Packaging.

Many Linux distributions include Tahoe-LAFS packages. Debian and Ubuntu users can apt-get install
tahoe-lafs. See OSPackages for other platforms.

2.3 Preliminaries

If you don’t use a pre-packaged copy of Tahoe, you can build it yourself. You’ll need Python2.7, pip, and virtualenv.
Tahoe-LAFS depends on some libraries which require a C compiler to build. However, for many platforms, PyPI hosts
already-built packages of libraries.

If there is no already-built package for your platform, you will need a C compiler, the Python development headers,
and some libraries (libffi-dev and libssl-dev).

On a modern Debian/Ubuntu-derived distribution, this command will get you everything you need:

apt-get install build-essential python-dev libffi-dev libssl-dev libyaml-dev python-—
—virtualenv

https://tahoe-lafs.org
https://tahoe-lafs.org/cgi-bin/mailman/listinfo/tahoe-dev
https://tahoe-lafs.org/cgi-bin/mailman/listinfo/tahoe-dev
https://tahoe-lafs.org/trac/tahoe-lafs/wiki/OSPackages

Tahoe-LAFS Documentation, Release 1.x

On OS-X, install pip and virtualenv as described below. If you want to compile the dependencies yourself, you’ll also
need to install Xcode and its command-line tools.

Note that Tahoe-LAFS depends on openssl 1.1.1c or greater.

2.3.1 Python 2.7

Check if you already have an adequate version of Python installed by running python -V. The latest version of
Python v2.7 is recommended, which is 2.7.11 as of this writing. Python v2.6.x and v3 do not work. On Windows,
we recommend the use of native Python v2.7, not Cygwin Python. If you don’t have one of these versions of Python
installed, download and install the latest version of Python v2.7. Make sure that the path to the installation directory
has no spaces in it (e.g. on Windows, do not install Python in the “Program Files” directory):

% python —--version
Python 2.7.11

2.3.2 pip

Many Python installations already include pip, but in case yours does not, get it with the pip install instructions:

)

% pip ——version
pip 10.0.1 from ... (python 2.7)

2.3.3 virtualenv

If you do not have an OS-provided copy of virtualenv, install it with the instructions from the virtualenv docu-
mentation:

% virtualenv —--version
15.1.0

2.3.4 C compiler and libraries

Except on OS-X, where the Tahoe project hosts pre-compiled wheels for all dependencies, you will need several C
libraries installed before you can build. You will also need the Python development headers, and a C compiler (your
python installation should know how to find these).

On Debian/Ubuntu-derived systems, the necessary packages are python-dev, 1ibffi-dev, and 1ibssl-dev,
and can be installed with apt —get. On RPM-based system (like Fedora) these may be named python-devel, etc,
instead, and cam be installed with yum or rpm.

Note that Tahoe-LAFS depends on openssl 1.1.1c or greater.

8 Chapter 2. Installing Tahoe-LAFS

https://www.python.org/downloads/
https://pip.pypa.io/en/stable/installing/
https://virtualenv.pypa.io/en/latest/installation.html
https://virtualenv.pypa.io/en/latest/installation.html

Tahoe-LAFS Documentation, Release 1.x

2.4 Install the Latest Tahoe-LAFS Release

We recommend creating a fresh virtualenv for your Tahoe-LAFS install, to isolate it from any python packages that
are already installed (and to isolate the rest of your system from Tahoe’s dependencies).

This example uses a virtualenv named venv, but you can call it anything you like. Many people prefer to keep all
their virtualenvs in one place, like ~/ . local/venvs/ or ~/venvs/.

It’s usually a good idea to upgrade the virtualenv’s pip and setuptools to their latest versions, with venv/bin/
pip install -U pip setuptools. Many operating systems have an older version of virtualenv, which
then includes older versions of pip and setuptools. Upgrading is easy, and only affects the virtualenv: not the rest of
your computer.

Then use the virtualenv’s pip to install the latest Tahoe-LAFS release from PyPI with venv/bin/pip install
tahoe-lafs. After installation, run venv/bin/tahoe —-version to confirm the install was successful:

)

% virtualenv venv

New python executable in ~/venv/bin/python2.7

Installing setuptools, pip, wheel...done.

% venv/bin/pip install -U pip setuptools
Downloading/unpacking pip from https://pypi.python.org/...

Successfully installed pip setuptools

[}

% venv/bin/pip install tahoe-lafs
Collecting tahoe-lafs

Installing collected packages:
Successfully installed ...

% venv/bin/tahoe —--version
tahoe-lafs: 1.14.0
foolscap:

o
°

2.4.1 Install From a Source Tarball
You can also install directly from the source tarball URL. To verify signatures, first see verifying_ signatures and
replace the URL in the following instructions with the local filename.

% virtualenv venv New python executable in ~/venv/bin/python2.7 Installing setuptools, pip,
wheel. .. done.

% venv/bin/pip install https://tahoe-lafs.org/downloads/tahoe-lafs-1.14.0.tar.bz2 Collecting https://
tahoe-lafs.org/downloads/tahoe-lafs-1.14.0.tar.bz2 ... Installing collected packages: ... Successfully
installed ...

% venv/bin/tahoe —version tahoe-lafs: 1.14.0 ...

2.4. Install the Latest Tahoe-LAFS Release 9

https://tahoe-lafs.org/downloads/tahoe-lafs-1.14.0.tar.bz2
https://tahoe-lafs.org/downloads/tahoe-lafs-1.14.0.tar.bz2
https://tahoe-lafs.org/downloads/tahoe-lafs-1.14.0.tar.bz2

Tahoe-LAFS Documentation, Release 1.x

2.4.2 Verifying Signatures

First download the source tarball and then any signatures. There are several developers who are able to produce
signatures for a release. A release may have multiple signatures. All should be valid and you should confirm at least
one of them (ideally, confirm all).

This statement, signed by the existing Tahoe release-signing key, attests to those developers authorized to sign a Tahoe
release:

Hash: SHA512

January 20, 2021

Any of the following core Tahoe contributers may sign a release. Each
release MUST be signed by at least one developer but MAY have
additional signatures. Each developer independently produces a
signature which is made available beside Tahoe releases after 1.15.0

This statement is signed by the existing Tahoe release key. Any future
such statements may be signed by it OR by any two developers (for
example, to add or remove developers from the list).

meejah

0xC2602803128069A7

9D5A 2BD5 688E CB88 9DEB CD3F C260 2803 1280 69A7
https://meejah.ca/meejah.asc

jean-paul calderone (exarkun)

0xE27BO85EDEAA4BLB

96B9 C5DA B2EA 9EB6 7941 9DB7 E27B 085E DEAA 4B1B
https://twistedmatrix.com/~exarkun/E27B085EDEAA4BLB.asc

brian warner (lothar)

0x863333C265497810

5810 F125 7F8C F753 7753 895A 8633 33C2 6549 7810
https://www.lothar.com/warner—-gpg.html

1Q0EzBAEBCgAdFiEE40510G00ac/KQXn/veDTHWhmanoFAMAHIyIACgkQveDTHWhm
anghgQf/YSbMXL+gwFhAZs jX39EV1br/Ik7WPPkJW7v1oHybTnwFpFIc52C0Ulx/
sgqRfk40yYtz9IBgOPXoWgXu9R4qdK6vYKxEsekcGTI9C5100yDz8YWXEWgbGK5mv I
aEub9WucD8r2u0QnnWéeDt znFuEpvOjtf/+2BU767+bvLsbViW88ocbuLfCgLdOgD
WZT9J3M+Y2Dc56DAJzP/4fkrUSVIofZStYp5u9HBjburgecYIpOg/cycdxXRoi 6Mp
1FTRFv3MI jmoamzSQseoIgP6fi8QRgPrffPrsyqAp+06mdnPhxxFgxt0O/ZErmpSa
+BGrLBxdWa8IF9UlA4F s5nuAzAKMEg==

=E9J+

Signatures are made available beside the release. So for example, a release like https://tahoe-lafs.org/
downloads/tahoe-lafs-1.16.0.tar.bz2 might have signatures tahoe-lafs-1.16.0.tar.bz2.
meejah.asc and tahoe-lafs-1.16.0.tar.bz2.warner.asc.

To verify the signatures using GnuPG:

10 Chapter 2. Installing Tahoe-LAFS

Tahoe-LAFS Documentation, Release 1.x

[}

% gpg —-verify tahoe-lafs-1.16.0.tar.bz2.meejah.asc tahoe-lafs-1.16.0.tar.bz2
gpg: Signature made XXX

gpg: using RSA key 9DS5A2BD5688ECB889DEBCD3FC2602803128069A7
gpg: Good signature from "meejah <meejah@meejah.ca>" [full]

% gpg ——verify tahoe-lafs-1.16.0.tar.bz2.warner.asc tahoe-lafs-1.16.0.tar.bz2
gpg: Signature made XXX

gpg: using RSA key 967EFE06699872411A77DF36D43B4C9C73225AAF
gpg: Good signature from "Brian Warner <warner@lothar.com>" [full]

2.4.3 Extras

Tahoe-LAFS provides some functionality only when explicitly requested at installation time. It does this using the
“extras” feature of setuptools. You can request these extra features when running the pip install command like
this:

)

% venv/bin/pip install tahoe-lafs|[tor]

This example enables support for listening and connecting using Tor. The Tahoe-LAFS documentation for specific
features which require an explicit install-time step will mention the “extra” that must be requested.

2.4.4 Hacking On Tahoe-LAFS

To modify the Tahoe source code, you should get a git checkout, and install with the ——editable flag. You should
also use the [test] extra to get the additional libraries needed to run the unit tests:

% git clone https://github.com/tahoe-lafs/tahoe-lafs.git

oe

cd tahoe-lafs

virtualenv venv

o

% venv/bin/pip install --editable . [test]
Obtaining file::~/tahoe-1lafs

Successfully installed

% venv/bin/tahoe —-version
tahoe-lafs: 1.14.0.post34.dev0

This way, you won’t have to re-run the pip install step each time you modify the source code.

2.5 Running the tahoe executable

The rest of the Tahoe-LAFS documentation assumes that you can run the t ahoe executable that you just created. You
have four basic options:

* Use the full path each time (e.g. ~/venv/bin/tahoe).

e “Activate” the virtualenv with . venv/bin/activate, to get a subshell with a $SPATH that includes the
venv/bin/ directory, then you can just run tahoe.

* Change your $PATH to include the venv/bin/ directory, so you can just run tahoe.

2.5. Running the tahoe executable 11

https://virtualenv.pypa.io/en/latest/userguide.html#activate-script

Tahoe-LAFS Documentation, Release 1.x

¢ Symlink from ~/bin/tahoe to the tahoe executable. Since ~/bin is typically in your SPATH (at least if
it exists when you log in), this will let you just run tahoe.

You might also find the pipsi tool convenient: pipsi install tahoe-lafs will create a new virtualenv, install
tahoe into it, then symlink just the executable (into ~/.local/bin/tahoe). Then either add ~/.local/bin/
to your $PATH, or make one last symlink into ~/bin/tahoe.

2.6 Running the Self-Tests

To run the self-tests from a source tree, you’ll need tox installed. On a Debian/Ubuntu system, use apt-get
install tox. You can also install it into your tahoe-specific virtualenv with pip install tox.

Then just run tox. This will create a new fresh virtualenv, install Tahoe (from the source tree, including any changes
you have made) and all its dependencies (including testing-only dependencies) into the virtualenv, then run the unit
tests. This ensures that the tests are repeatable and match the results of other users, unaffected by any other Python
packages installed on your machine. On a modern computer this will take 5-10 minutes, and should result in a “all
tests passed” mesage:

)

s tox
GLOB sdist-make: ~/tahoe-lafs/setup.py
py27 recreate: ~/tahoe-lafs/.tox/py27
py27 inst: ~/tahoe-lafs/.tox/dist/tahoe-lafs-1.14.0.post8.dev0.zip
py27 runtests: commands[0] | tahoe —--version
py27 runtests: commands[l] | trial --rterrors allmydata
allmydata.test.test_auth
AccountFileCheckerKeyTests
test_authenticated ... [OK]
test_missing_signature OK

Ran 1186 tests in 423.179s

PASSED (skips=7, expectedFailures=3, successes=1176)
summary

py27: commands succeeded
congratulations :)

2.7 Common Problems

If you see an error like fatal error: Python.h: No such file or directory while compiling
the dependencies, you need the Python development headers. If you are on a Debian or Ubuntu system, you can install
them with sudo apt—-get install python-dev. On RedHat/Fedora, install python-devel.

Similar errors about openssl/crypto.h indicate that you are missing the OpenSSL development headers
(libssl-dev). Likewise £fi.h means youneed 1ibffi-dev.

Note that Tahoe-LAFS depends on openssl 1.1.1c or greater.

12 Chapter 2. Installing Tahoe-LAFS

https://pypi.python.org/pypi/pipsi/0.9

Tahoe-LAFS Documentation, Release 1.x

2.8 Using Tahoe-LAFS

Now you are ready to deploy a decentralized filesystem. You will use the t ahoe executable to create, configure, and
launch your Tahoe-LAFS nodes. See How To Run Tahoe-LAFS for instructions on how to do that.

2.8. Using Tahoe-LAFS 13

Tahoe-LAFS Documentation, Release 1.x

14 Chapter 2. Installing Tahoe-LAFS

CHAPTER
THREE

HOW TO RUN TAHOE-LAFS

3.1 Introduction

This is how to run a Tahoe-LAFS client or a complete Tahoe-LAFS grid. First you have to install the Tahoe-LAFS
software, as documented in /nstalling Tahoe-LAF'S.

The tahoe program in your virtualenv’s bin directory is used to create, start, and stop nodes. Each node lives in a
separate base directory, in which there is a configuration file named tahoe.cfg. Nodes read and write files within
this base directory.

A grid consists of a set of storage nodes and client nodes running the Tahoe-LAFS code. There is also an introducer
node that is responsible for getting the other nodes talking to each other.

If you’re getting started we recommend you try connecting to the public test grid as you only need to create a client
node. When you want to create your own grid you’ll need to create the introducer and several initial storage nodes
(see the note about small grids below).

3.1.1 Being Introduced to a Grid

A collection of Tahoe servers is called a Grid and usually has 1 Introducer (but sometimes more, and it’s possible to
run with zero). The Introducer announces which storage servers constitute the Grid and how to contact them. There is
a secret “fURL” you need to know to talk to the Introducer.

One way to get this secret is using traditional tools such as encrypted email, encrypted instant-messaging, etcetera. It
is important to transmit this fURL secretly as knowing it gives you access to the Grid.

An additional way to share the fURL securely is via magic wormhole. This uses a weak one-time password and a
server on the internet (at wormhole.tahoe-lafs.org) to open a secure channel between two computers. In Tahoe-LAFS
this functions via the commands tahoe invite and tahoe create-client —join. A person who already has access to a
Grid can use tahoe invite to create one end of the magic wormhole and then transmits some JSON (including the
Introducer’s secret fURL) to the other end. tahoe invite will print a one-time secret code; you must then communicate
this code to the person who will join the Grid.

The other end of the magic wormhole in this case is tahoe create-client —join <one-time code>, where the person
being invited types in the code they were given. Ideally, this code would be transmitted securely. It is, however, only
useful exactly once. Also, it is much easier to transcribe by a human. Codes look like 7-surrender-tunnel (a short
number and two words).

15

https://tahoe-lafs.org/trac/tahoe-lafs/wiki/TestGrid
https://magic-wormhole.io/
https://magic-wormhole.io/
https://magic-wormhole.io/

Tahoe-LAFS Documentation, Release 1.x

3.1.2 Running a Client

To construct a client node, run “tahoe create-client”, which will create ~/ .tahoe to be the node’s base
directory. Acquire the introducer. furl (see below if you are running your own introducer, or use the one from
the TestGrid page), and write itto ~/ . tahoe/private/introducers.yaml (see Introducer Definitions). Then
use “tahoe run ~/.tahoe”. After that, the node should be off and running. The first thing it will do is connect
to the introducer and get itself connected to all other nodes on the grid.

Some Grids use “magic wormhole” one-time codes to configure the basic options. In such a case you use tahoe
create-client --join <one-time-code> and do not have to do any of the tahoe.cfg editing men-
tioned above.

By default, “cahoe create-client” creates a client-only node, that does not offer its disk space to other nodes.
To configure other behavior, use “tahoe create—node” or see Configuring a Tahoe-LAFS node.

The “tahoe run” command above will run the node in the foreground. tahoe --help gives a summary of all
commands.

3.1.3 Running a Server or Introducer

To build either a storage server node, or an introducer node, you’ll need a way for clients to connect to it. The simplest
case is when the computer is on the public internet (e.g. a “VPS” virtual private server, with a public IP address and a
DNS hostname like example.net). See How To Configure A Server for help with more complex scenarios, using
the ——port and ——location arguments.

To construct an introducer, create a new base directory for it (the name of the directory is up to you), cd into it, and
run “tahoe create-introducer —--hostname=example.net .” (butusing the hostname of your VPS).
Now run the introducer using “tahoe run .”. After it starts, it will write a file named introducer. furl into
the private/ subdirectory of that base directory. This file contains the URL the other nodes must use in order to
connect to this introducer.

You can distribute your Introducer fURL securely to new clients by using the tahoe invite command. This will
prepare some JSON to send to the other side, request a magic wormhole code from wormhole.tahoe-lafs.org
and print it out to the terminal. This one-time code should be transmitted to the user of the client, who can then run
tahoe create-client --join <one-time-code>.

Storage servers are created the same way: tahoe create-node —--hostname=HOSTNAME . from a new di-
rectory. You’ll need to provide the introducer FURL (either as a ——introducer= argument, or by editing the
tahoe. cfg configuration file afterwards) to connect to the introducer of your choice.

See Configuring a Tahoe-LAFS node for more details about how to configure Tahoe-LAFS.

3.1.4 A note about small grids

By default, Tahoe-LAFS ships with the configuration parameter shares.happy set to 7. If you are using Tahoe-
LAFS on a grid with fewer than 7 storage nodes, this won’t work well for you — none of your uploads will succeed.
To fix this, see Configuring a Tahoe-LAFS node to learn how to set shares . happy to a more suitable value for your
grid.

16 Chapter 3. How To Run Tahoe-LAFS

https://tahoe-lafs.org/trac/tahoe-lafs/wiki/TestGrid
https://magic-wormhole.io/

Tahoe-LAFS Documentation, Release 1.x

3.1.5 Development with Docker

If you want to stand up a small local test environment, you can install Docker and Docker Compose. Once you have
cloned the repository, run docker-compose up from the project’s root directory. This will start a introducer,
server, and a client configured to connect to them. After the containers start, you can access the WUI by navigating to
http://localhost:3456 in your browser.

3.2 Do Stuff With It

This is how to use your Tahoe-LAFS node.

3.2.1 The WUI

Point your web browser to http://127.0.0.1:3456 — which is the URL of the gateway running on your own local
computer — to use your newly created node.

Create a new directory (with the button labelled “create a directory”). Your web browser will load the new directory.
Now if you want to be able to come back to this directory later, you have to bookmark it, or otherwise save a copy of
the URL. If you lose the URL to this directory, then you can never again come back to this directory.

3.2.2 The CLI

Prefer the command-line? Run “tahoe —--help” (the same command-line tool that is used to start and stop nodes
serves to navigate and use the decentralized file store). To get started, create a new directory and mark it as the ‘tahoe:’
alias by running “tahoe create-alias tahoe”. Once you’'ve done that, you can do “tahoe 1ls tahoe:”
and “tahoe cp LOCALFILE tahoe:foo.txt”towork with your file store. The Tahoe-LAFS CLI uses similar
syntax to the well-known scp and rsync tools. See The Tahoe-LAFS CLI commands for more details.

To backup a directory full of files and subdirectories, run “tahoe backup LOCALDIRECTORY tahoe:”. This
will create a new LAFS subdirectory inside the “tahoe” LAFS directory named “Archive”, and inside “Archive”,
it will create a new subdirectory whose name is the current date and time. That newly created subdirectory will
be populated with a snapshot copy of all files and directories currently reachable from LOCALDIRECTORY. Then
tahoe backup will make a link to that snapshot directory from the “tahoe” LAFS directory, and name the link
“Latest”.

tahoe backup cleverly avoids uploading any files or directories that haven’t changed, and it also cleverly dedupli-
cates any files or directories that have identical contents to other files or directories that it has previously backed-up.
This means that running tahoe backup is a nice incremental operation that backs up your files and directories
efficiently, and if it gets interrupted (for example by a network outage, or by you rebooting your computer during the
backup, or so on), it will resume right where it left off the next time you run tahoe backup.

See The Tahoe-LAFS CLI commands for more information about the tahoe backup command, as well as other
commands.

As with the WUI (and with all current interfaces to Tahoe-LAFS), you are responsible for remembering directory
capabilities yourself. If you create a new directory and lose the capability to it, then you cannot access that directory
ever again.

3.2. Do Stuff With It 17

https://docs.docker.com/
https://docs.docker.com/compose/
http://127.0.0.1:3456

Tahoe-LAFS Documentation, Release 1.x

3.2.3 The SFTP frontend

You can access your Tahoe-LAFS grid via any SFTP client. See Tahoe-LAFS SFTP Frontend for how to set this up. On
most Unix platforms, you can also use SFTP to plug Tahoe-LAFS into your computer’s local filesystem via sshfs,
but see the FAQ about performance problems.

The SftpFrontend page on the wiki has more information about using SFTP with Tahoe-LAFS.

3.2.4 The WAPI

Want to program your Tahoe-LAFS node to do your bidding? Easy! See The Tahoe REST-ful Web API.

3.3 Socialize

You can chat with other users of and hackers of this software on the #tahoe-lafs IRC channel at irc.freenode.
net, or on the tahoe-dev mailing list.

3.4 Complain

Bugs can be filed on the Tahoe-LAFS “Trac” instance, at https://tahoe-lafs.org/trac/ .

You can also “fork” the repo and submit Pull Requests on Github: https://github.com/tahoe-lafs/tahoe-lafs .

18 Chapter 3. How To Run Tahoe-LAFS

https://en.wikipedia.org/wiki/SSH_file_transfer_protocol
https://tahoe-lafs.org/trac/tahoe-lafs/wiki/FAQ#Q23_FUSE
https://tahoe-lafs.org/trac/tahoe-lafs/wiki/SftpFrontend
https://tahoe-lafs.org/cgi-bin/mailman/listinfo/tahoe-dev
https://tahoe-lafs.org/trac/
https://github.com/tahoe-lafs/tahoe-lafs

CHAPTER
FOUR

MAGIC WORMHOLE INVITES

4.1 Magic Wormhole

magic wormhole is a server and a client which together use Password Authenticated Key Exchange (PAKE) to use a
short code to establish a secure channel between two computers. These codes are one-time use and an attacker gets at
most one “guess”, thus allowing low-entropy codes to be used.

4.2 Invites and Joins

Inside Tahoe-LAFS we are using a channel created using magic wormhole to exchange configuration and the secret
fURL of the Introducer with new clients.

This is a two-part process. Alice runs a grid and wishes to have her friend Bob use it as a client. She runs tahoe
invite bob which will print out a short “wormhole code” like 2—unicorn—-quiver. You may also include some
options for total, happy and needed shares if you like.

Alice then transmits this one-time secret code to Bob. Alice must keep her command running until Bob has done his
step as it is waiting until a secure channel is established before sending the data.

Bob then runs tahoe create-client --join <secret code> with any other options he likes. This will
“use up” the code establishing a secure session with Alice’s computer. If an attacker tries to guess the code, they get
only once chance to do so (and then Bob’s side will fail). Once Bob’s computer has connected to Alice’s computer, the
two computers performs the protocol described below, resulting in some JSON with the Introducer fURL, nickname
and any other options being sent to Bob’s computer. The tahoe create-client command then uses these
options to set up Bob’s client.

4.3 Tahoe-LAFS Secret Exchange

The protocol that the Alice (the one doing the invite) and Bob (the one being invited) sides perform once a magic
wormhole secure channel has been established goes as follows:

Alice and Bob both immediately send an “abilities” message as JSON. For Alice this is {"abilities":
{"server-v1": {}1}. For Bob, thisis {"abilities": {"client-v1": {}}}.

After receiving the message from the other side and confirming the expected protocol, Alice transmits the configuration
JSON:

{
"needed": 3,
"total": 10,

(continues on next page)

19

https://github.com/warner/magic-wormhole#design
https://github.com/warner/magic-wormhole#design

Tahoe-LAFS Documentation, Release 1.x

(continued from previous page)

"happy": 7,
"nickname": "bob",
"introducer": "pb://XXXXXXKXXKXXXKXXKXXKXXXKXXKXXKXXXXXXxXxX@example.com:41505/

SYYYYYYYYYVYYYYYYYYYYYYY"
}

Both sides then disconnect.

As you can see, there is room for future revisions of the protocol but as of yet none have been sketched out.

20 Chapter 4. Magic Wormhole Invites

CHAPTER
FIVE

—

—_— = e
N =

13.

© Y ® =N 0k WD

Node Types

Overall Node Configuration
Connection Management

Client Configuration

Storage Server Configuration
Storage Server Plugin Configuration
Frontend Configuration

Running A Helper

Running An Introducer

Other Files in BASEDIR

. Static Server Definitions

Other files

Example

CONFIGURING A TAHOE-LAFS NODE

A Tahoe-LAFS node is configured by writing to files in its base directory. These files are read by the node when it
starts, so each time you change them, you need to restart the node.

The node also writes state to its base directory, so it will create files on its own.

This document contains a complete list of the config files that are examined by the client node, as well as the state files
that you’ll observe in its base directory.

The main file is named “tahoe.cfg”, and is an “.INI”-style configuration file (parsed by the Python stdlib Con-
figParser module: “[name]” section markers, lines with “key.subkey: wvalue”, RFC822-style continua-
tions). There are also other files containing information that does not easily fit into this format. The “tahoe
create-node” or “tahoe create-client” command will create an initial tahoe.cfg file for you. After
creation, the node will never modify the tahoe . cfg file: all persistent state is put in other files.

The item descriptions below use the following types:

boolean

one of (True, yes, on, 1, False, off, no, 0), case-insensitive

strports string

a Twisted listening-port specification string, like “t cp: 80”7 or “t cp:3456:interface=127.0.0.
1”. For a full description of the format, see the Twisted strports documentation. Please note, if interface=
is not specified, Tahoe-LAFS will attempt to bind the port specified on all interfaces.

21

https://en.wikipedia.org/wiki/INI_file
https://docs.python.org/2/library/configparser.html
https://docs.python.org/2/library/configparser.html
https://www.ietf.org/rfc/rfc0822
https://twistedmatrix.com/documents/current/api/twisted.application.strports.html

Tahoe-LAFS Documentation, Release 1.x

endpoint specification string

a Twisted Endpoint specification string, like “tcp:80” or “tcp:3456:interface=127.0.0.1".
These are replacing strports strings. For a full description of the format, see the Twisted Endpoints docu-
mentation. Please note, if interface= is not specified, Tahoe-LAFS will attempt to bind the port specified
on all interfaces. Also note that tub.port only works with TCP endpoints right now.

FURL string

a Foolscap endpoint identifier, like pb://sokljdy7eok5c3xkmjeqpw@192.168.69.
247:44801/egpwgtzm

5.1 Node Types

A node can be a client/server or an introducer.

Client/server nodes provide one or more of the following services:

A client/server that provides storage service (i.e. storing shares for clients) is called a “storage server”. If it pro-
vides any of the other services, it is a “storage client” (a node can be both a storage server and a storage client). A

¢ web-API service
e SFTP service
* helper service

e storage service.

client/server node that provides web-API service is called a “gateway”.

5.2 Overall Node Configuration

This section controls the network behavior of the node overall: which ports and IP addresses are used, when connec-
tions are timed out, etc. This configuration applies to all node types and is independent of the services that the node is

offering.

If your node is behind a firewall or NAT device and you want other clients to connect to it, you’ll need to open a port
in the firewall or NAT, and specify that port number in the tub.port option. If behind a NAT, you may need to set the

tub.location option described below.

[node]

nickname = (UTF-8 string, optional)

This value will be displayed in management tools as this node’s “nickname”. If not provided, the nick-
name will be set to “<unspecified>". This string shall be a UTF-8 encoded Unicode string.

web.port = (strports string, optional)

This controls where the node’s web server should listen, providing node status and, if the node is a
client/server, providing web-API service as defined in The Tahoe REST-ful Web API.

This file contains a Twisted “strports” specification such as “3456” or
“tcp:3456:interface=127.0.0.1". The “tahoe create-node” or “tahoe
create-client” commands set the web.port to “tcp:3456:interface=127.0.0.1"
by default; this is overridable by the —-webport option. You can make it use SSL by writing
“ssl:3456:privateKey=mykey.pem:certKey=cert.pem” instead.

If this is not provided, the node will not run a web server.

22

Chapter 5. Configuring a Tahoe-LAFS node

http://twistedmatrix.com/documents/current/core/howto/endpoints.html#endpoint-types-included-with-twisted
http://twistedmatrix.com/documents/current/core/howto/endpoints.html#endpoint-types-included-with-twisted

Tahoe-LAFS Documentation, Release 1.x

web.

static = (string, optional)

This controls where the /static portion of the URL space is served. The value is a directory name
(~username is allowed, and non-absolute names are interpreted relative to the node’s basedir), which
can contain HTML and other files. This can be used to serve a Javascript-based frontend to the Tahoe-
LAFS node, or other services.

The default value is “public_html”, which will serve BASEDIR/public_html . With the default
settings, http://127.0.0.1:3456/static/foo.html will serve the contents of BASEDIR/
public_html/foo.html.

tub.port = (endpoint specification strings or "disabled", optional)

tub.

This controls which port the node uses to accept Foolscap connections from other nodes. It is parsed
as a comma-separated list of Twisted “server endpoint descriptor” strings, each of which is a value like
tcp:12345and tcp:23456:interface=127.0.0.1.

To listen on multiple ports at once (e.g. both TCP-on-IPv4 and TCP-on-IPv6), use some-
thing like tcp6:interface=2600\:3c01\:£f03c\:91ff\:fe93\:d272:3456,
tcp:interface=8.8.8.8:3456. Lists of endpoint descriptor strings like the following
tcp:12345,tcp6:12345 are known to not work because an Address already in use.
error.

If any descriptor begins with 1isten:tor,or listen: i2p, the corresponding tor/i2p Provider object
will construct additional endpoints for the Tub to listen on. This allows the [tor] or [12p] sections
in tahoe. cfg to customize the endpoint; e.g. to add I2CP control options. If you use 1isten:i2p,
you should not also have an 12p: . . endpoint in tub.port, as that would result in multiple I12P-based
listeners.

If tub.port is the string disabled, the node will not listen at all, and thus cannot accept connections
from other nodes. If [storage] enabled = true, or [helper] enabled = true, or the
node is an Introducer, then it is an error to have tub.port be empty. If tub.port is disabled, then
tub.location must also be disabled, and vice versa.

For backwards compatibility, if this contains a simple integer, it will be used as a TCP port number, like
tcp: %d (which will accept connections on all interfaces). However tub . port cannot be 0 or tcp: 0
(older versions accepted this, but the node is no longer willing to ask Twisted to allocate port numbers in
this way). If tub.port is present, it may not be empty.

If the tub.port config key is not provided (e.g. tub.port appears nowhere in the [node] section,
or is commented out), the node will look in BASEDIR/client.port (or BASEDIR/introducer.
port, for introducers) for the descriptor that was used last time.

If neither tub . port nor the port file is available, the node will ask the kernel to allocate any available
port (the moral equivalent of t cp: 0). The allocated port number will be written into a descriptor string
in BASEDIR/client.port (or introducer.port), so that subsequent runs will re-use the same
port.

location = (hint string or "disabled", optional)

In addition to running as a client, each Tahoe-LAFS node can also run as a server, listening for con-
nections from other Tahoe-LAFS clients. The node announces its location by publishing a “FURL” (a
string with some connection hints) to the Introducer. The string it publishes can be found in BASEDIR/
private/storage.furl. The tub.location configuration controls what location is published
in this announcement.

If your node is meant to run as a server, you should fill this in, using a hostname or IP address that is
reachable from your intended clients.

If tub.port issetto disabled, then tub.location must also be disabled.

5.2. Overall Node Configuration

23

Tahoe-LAFS Documentation, Release 1.x

If you don’t provide tub.location, the node will try to figure out a useful one by itself, by using
tools like “i fconfig” to determine the set of IP addresses on which it can be reached from nodes both
near and far. It will also include the TCP port number on which it is listening (either the one specified by
tub.port, or whichever port was assigned by the kernel when t ub . port is left unspecified). However
this automatic address-detection is discouraged, and will probably be removed from a future release. It
will include the 127.0.0.1 “localhost” address (which is only useful to clients running on the same
computer), and RFC1918 private-network addresses like 10.*.* .+ and 192.168. . (which are
only useful to clients on the local LAN). In general, the automatically-detected IP addresses will only be
useful if the node has a public IP address, such as a VPS or colo-hosted server.

You will certainly need to set tub . location if your node lives behind a firewall that is doing inbound
port forwarding, or if you are using other proxies such that the local IP address or port number is not the
same one that remote clients should use to connect. You might also want to control this when using a Tor
proxy to avoid revealing your actual IP address through the Introducer announcement.

If tub.location is specified, by default it entirely replaces the automatically determined set of IP
addresses. To include the automatically determined addresses as well as the specified ones, include the
uppercase string “AUTO” in the list.

The value is a comma-separated string of method:host:port location hints, like this:

tcp:123.45.67.89:8098, tcp:tahoe.example.com:8098,tcp:127.0.0.1:8098

A few examples:

* Don’t listen at all (client-only mode):

tub.port = disabled
tub.location = disabled

* Use a DNS name so you can change the IP address more easily:

tub.port = tcp:8098
tub.location = tcp:tahoe.example.com:8098

* Run a node behind a firewall (which has an external IP address) that has been configured to forward
external port 7912 to our internal node’s port 8098:

tub.port = tcp:8098
tub.location = tcp:external-firewall.example.com:7912

* Emulate default behavior, assuming your host has public IP address of 123.45.67.89, and the kernel-
allocated port number was 8098:

tub.port = tcp:8098
tub.location = tcp:123.45.67.89:8098,tcp:127.0.0.1:8098

¢ Use a DNS name but also include the default set of addresses:

tub.port = tcp:8098
tub.location = tcp:tahoe.example.com:8098,AUTO

* Run a node behind a Tor proxy (perhaps via t orsocks), in client-only mode (i.e. we can make out-
bound connections, but other nodes will not be able to connect to us). The literal ‘unreachable.
example.org’ will not resolve, but will serve as a reminder to human observers that this node
cannot be reached. “Don’t call us.. we’ll call you™:

24 Chapter 5. Configuring a Tahoe-LAFS node

Tahoe-LAFS Documentation, Release 1.x

tub.port = tcp:8098
tub.location = tcp:unreachable.example.org:0

* Run a node behind a Tor proxy, and make the server available as a Tor “hidden service”. (This
assumes that other clients are running their node with torsocks, such that they are prepared to
connect to a . onion address.) The hidden service must first be configured in Tor, by giving it a
local port number and then obtaining a . onion name, using something in the torrc file like:

HiddenServiceDir /var/lib/tor/hidden_services/tahoe
HiddenServicePort 29212 127.0.0.1:8098

once Tor is restarted, the . onion hostname will be in /var/lib/tor/hidden_services/
tahoe/hostname. Then set up your tahoe. cfqg like:

tub.port = tcp:8098
tub.location = tor:ualhejtg2p7ohfbb.onion:29212

log_gatherer.furl = (FURL, optional)

If provided, this contains a single FURL string that is used to contact a “log gatherer”, which will be
granted access to the logport. This can be used to gather operational logs in a single place. Note that
in previous releases of Tahoe-LAFS, if an old-style BASEDIR/log_gatherer. furl file existed it
would also be used in addition to this value, allowing multiple log gatherers to be used at once. As of
Tahoe-LAFS v1.9.0, an old-style file is ignored and a warning will be emitted if one is detected. This
means that as of Tahoe-LAFS v1.9.0 you can have at most one log gatherer per node. See ticket #1423
about lifting this restriction and letting you have multiple log gatherers.

timeout.keepalive = (integer in seconds, optional)
timeout.disconnect = (integer in seconds, optional)

If timeout.keepalive is provided, it is treated as an integral number of seconds, and sets the
Foolscap “keepalive timer” to that value. For each connection to another node, if nothing has been heard
for a while, we will attempt to provoke the other end into saying something. The duration of silence that
passes before sending the PING will be between KT and 2*KT. This is mainly intended to keep NAT
boxes from expiring idle TCP sessions, but also gives TCP’s long-duration keepalive/disconnect timers
some traffic to work with. The default value is 240 (i.e. 4 minutes).

If timeout.disconnect is provided, this is treated as an integral number of seconds, and sets the Foolscap
“disconnect timer” to that value. For each connection to another node, if nothing has been heard for a
while, we will drop the connection. The duration of silence that passes before dropping the connection
will be between DT-2*KT and 2*DT+2*KT (please see ticket #521 for more details). If we are sending a
large amount of data to the other end (which takes more than DT-2*KT to deliver), we might incorrectly
drop the connection. The default behavior (when this value is not provided) is to disable the disconnect
timer.

See ticket #521 for a discussion of how to pick these timeout values. Using 30 minutes means we’ll
disconnect after 22 to 68 minutes of inactivity. Receiving data will reset this timeout, however if we have
more than 22min of data in the outbound queue (such as 800kB in two pipelined segments of 10 shares
each) and the far end has no need to contact us, our ping might be delayed, so we may disconnect them
by accident.

tempdir = (string, optional)

This specifies a temporary directory for the web-API server to use, for holding large files while they are
being uploaded. If a web-API client attempts to upload a 10GB file, this tempdir will need to have at least
10GB available for the upload to complete.

5.2. Overall Node Configuration 25

https://tahoe-lafs.org/trac/tahoe-lafs/ticket/1423
https://tahoe-lafs.org/trac/tahoe-lafs/ticket/521
https://tahoe-lafs.org/trac/tahoe-lafs/ticket/521

Tahoe-LAFS Documentation, Release 1.x

The default value is the tmp directory in the node’s base directory (i.e. BASEDIR/tmp), but it can be
placed elsewhere. This directory is used for files that usually (on a Unix system) go into /tmp. The string
will be interpreted relative to the node’s base directory.

reveal-IP-address = (boolean, optional, defaults to True)

This is a safety flag. When set to False (aka “private mode”), the node will refuse to start if any of the
other configuration options would reveal the node’s IP address to servers or the external network. This
flag does not directly affect the node’s behavior: its only power is to veto node startup when something
looks unsafe.

The default is True (non-private mode), because setting it to False requires the installation of additional
libraries (use pip install tahoe-lafs[tor] and/or pip install tahoe-lafs[i2p] to
get them) as well as additional non-python software (Tor/I2P daemons). Performance is also generally
reduced when operating in private mode.

When False, any of the following configuration problems will cause tahoe run to throw a PrivacyError
instead of starting the node:

* [node] tub.location contains any tcp: hints
* [node] tub.location uses AUTO, or is missing/empty (because that defaults to AUTO)

* [connections] tcp =is setto tcp (or left as the default), rather than being set to tor or
disabled

5.3 Connection Management

Three sections ([tor], [12p], and [connections]) control how the Tahoe node makes outbound connections.
Tor and I2P are configured here. This also controls when Tor and I2P are used: for all TCP connections (to hide your
IP address), or only when necessary (just for servers which declare that they need Tor, because they use .onion
addresses).

Note that if you want to protect your node’s IP address, you should set [node] reveal-IP-address =
False, which will refuse to launch the node if any of the other configuration settings might violate this privacy

property.

5.3.1 [connections]
This section controls when Tor and I2P are used. The [tor] and [12p] sections (described later) control how
Tor/I2P connections are managed.

All Tahoe nodes need to make a connection to the Introducer; the private/introducers.yaml file (described
below) configures where one or more Introducers live. Tahoe client nodes must also make connections to storage
servers: these targets are specified in announcements that come from the Introducer. Both are expressed as FURLs
(a Foolscap URL), which include a list of “connection hints”. Each connection hint describes one (of perhaps many)
network endpoints where the service might live.

Connection hints include a type, and look like:
e tcp:tahoe.example.org:12345
e tor:u33mdy7klhz3b.onion:1000

e i2p:c2ng2pbrmxmlwpijn

26 Chapter 5. Configuring a Tahoe-LAFS node

Tahoe-LAFS Documentation, Release 1.x

tor hints are always handled by the t or handler (configured in the [tor] section, described below). Likewise, 1 2p
hints are always routed to the i 2p handler. But either will be ignored if Tahoe was not installed with the necessary
Tor/I2P support libraries, or if the Tor/I2P daemon is unreachable.

The [connections] section lets you control how tcp hints are handled. By default, they use the normal TCP
handler, which just makes direct connections (revealing your node’s IP address to both the target server and the
intermediate network). The node behaves this way if the [connections] section is missing entirely, or if it looks
like this:

[connections]
tcp = tcp

To hide the Tahoe node’s IP address from the servers that it uses, set the [connections] section to use Tor for
TCP hints:

[connections]
tcp = tor

You can also disable TCP hints entirely, which would be appropriate when running an 12P-only node:

[connections]
tcp = disabled

(Note that I2P does not support connections to normal TCP ports, so [connections] tcp = 12p isinvalid)

In the future, Tahoe services may be changed to live on HTTP/HTTPS URLs instead of Foolscap. In that case,
connections will be made using whatever handler is configured for t cp hints. So the same tcp = tor configuration
will work.

5.3.2 [tor]

This controls how Tor connections are made. The defaults (all empty) mean that, when Tor is needed, the node will try
to connect to a Tor daemon’s SOCKS proxy on localhost port 9050 or 9150. Port 9050 is the default Tor SOCKS port,
so it should be available under any system Tor instance (e.g. the one launched at boot time when the standard Debian
tor package is installed). Port 9150 is the SOCKS port for the Tor Browser Bundle, so it will be available any time
the TBB is running.

You can set launch = True to cause the Tahoe node to launch a new Tor daemon when it starts up (and kill it at
shutdown), if you don’t have a system-wide instance available. Note that it takes 30-60 seconds for Tor to get running,
so using a long-running Tor process may enable a faster startup. If your Tor executable doesn’t live on $SPATH, use
tor.executable= to specify it.

[tor]
enabled = (boolean, optional, defaults to True)

If False, this will disable the use of Tor entirely. The default of True means the node will use Tor, if
necessary, and if possible.

socks.port = (string, optional, endpoint specification string, defaults to
empty)

This tells the node that Tor connections should be routed to a SOCKS proxy listening on the given end-
point. The default (of an empty value) will cause the node to first try localhost port 9050, then if that
fails, try localhost port 9150. These are the default listening ports of the standard Tor daemon, and the Tor
Browser Bundle, respectively.

While this nominally accepts an arbitrary endpoint string, internal limitations prevent it from accepting
anything but tcp:HOST :PORT (unfortunately, unix-domain sockets are not yet supported). See ticket

5.3. Connection Management 27

Tahoe-LAFS Documentation, Release 1.x

#2813 for details. Also note that using a HOST of anything other than localhost is discouraged, because
you would be revealing your IP address to external (and possibly hostile) machines.

control.port = (string, optional, endpoint specification string)

This tells the node to connect to a pre-existing Tor daemon on the given control port (which is typically
unix://var/run/tor/control or tcp:localhost:9051). The node will then ask Tor what
SOCKS port it is using, and route Tor connections to that.

launch = (bool, optional, defaults to False)

If True, the node will spawn a new (private) copy of Tor at startup, and will kill it at shutdown. The new
Tor will be given a persistent state directory under NODEDIR/private/, where Tor’s microdescriptors
will be cached, to speed up subsequent startup.

tor.executable = (string, optional, defaults to empty)

This controls which Tor executable is used when launch = True. If empty, the first executable pro-
gram named tor found on $PATH will be used.

There are 5 valid combinations of these configuration settings:
* 1: (empty): use SOCKS on port 9050/9150
e 2: launch = true: launch a new Tor
* 3: socks.port = tcp:HOST:PORT: use an existing Tor on the given SOCKS port
* 4: control.port = ENDPOINT: use an existing Tor at the given control port

e 5: enabled = false: no Toratall

1 is the default, and should work for any Linux host with the system Tor package installed. 2 should work on any box
with Tor installed into $PATH, but will take an extra 30-60 seconds at startup. 3 and 4 can be used for specialized
installations, where Tor is already running, but not listening on the default port. 5 should be used in environments

where Tor is installed, but should not be used (perhaps due to a site-wide policy).

Note that Tor support depends upon some additional Python libraries. To install Tahoe with Tor support, use pip

install tahoe-lafs[tor].

5.3.3 [i2p]

This controls how I2P connections are made. Like with Tor, the all-empty defaults will cause I2P connections to be

routed to a pre-existing I2P daemon on port 7656. This is the default SAM port for the i2p daemon.
[i2p]
enabled = (boolean, optional, defaults to True)

If False, this will disable the use of I2P entirely. The default of True means the node will use I2P, if
necessary, and if possible.

sam.port = (string, optional, endpoint descriptor, defaults to empty)

This tells the node that I2P connections should be made via the SAM protocol on the given port. The
default (of an empty value) will cause the node to try localhost port 7656. This is the default listening port
of the standard I2P daemon.

launch = (bool, optional, defaults to False)

If True, the node will spawn a new (private) copy of I2P at startup, and will kill it at shutdown. The new
I2P will be given a persistent state directory under NODEDIR/private/, where I2P’s microdescriptors
will be cached, to speed up subsequent startup. The daemon will allocate its own SAM port, which will
be queried from the config directory.

28 Chapter 5. Configuring a Tahoe-LAFS node

Tahoe-LAFS Documentation, Release 1.x

i2p.configdir = (string, optional, directory)

This tells the node to parse an I2P config file in the given directory, and use the SAM port it finds there.
If launch = True, the new I2P daemon will be told to use the given directory (which can be pre-
populated with a suitable config file). If launch = False, we assume there is a pre-running 12P
daemon running from this directory, and can again parse the config file for the SAM port.

i2p.executable = (string, optional, defaults to empty)

This controls which I2P executable is used when launch = True. If empty, the first executable pro-
gram named i2p found on $PATH will be used.

5.4 Client Configuration

[client]
introducer.furl = (FURL string, mandatory)
DEPRECATED. See Introducer Definitions.

This FURL tells the client how to connect to the introducer. Each Tahoe-LAFS grid is defined by an
introducer. The introducer’s FURL is created by the introducer node and written into its private base
directory when it starts, whereupon it should be published to everyone who wishes to attach a client to
that grid

helper.furl = (FURL string, optional)

If provided, the node will attempt to connect to and use the given helper for uploads. See The Tahoe
Upload Helper for details.

shares.needed = (int, optional) aka "k", default 3
shares.total = (int, optional) aka "N", N >= k, default 10
shares.happy = (int, optional) 1 <= happy <= N, default 7

These three values set the default encoding parameters. Each time a new file is uploaded, erasure-coding
is used to break the ciphertext into separate shares. There will be N (i.e. shares.total) shares created,
and the file will be recoverable if any k (i.e. shares.needed) shares are retrieved. The default values
are 3-of-10 (i.e. shares.needed = 3, shares.total = 10). Setting k to 1 is equivalent to
simple replication (uploading N copies of the file).

These values control the tradeoff between storage overhead and reliability. To a first approximation, a
IMB file will use (IMB * N/k) of backend storage space (the actual value will be a bit more, because
of other forms of overhead). Up to N-k shares can be lost before the file becomes unrecoverable. So
large N/k ratios are more reliable, and small N/k ratios use less disk space. N cannot be larger than 256,
because of the 8-bit erasure-coding algorithm that Tahoe-LAFS uses. k can not be greater than N. See
Performance costs for some common operations for more details.

shares.happy allows you control over how well to “spread out” the shares of an immutable file.
For a successful upload, shares are guaranteed to be initially placed on at least shares.happy distinct
servers, the correct functioning of any k of which is sufficient to guarantee the availability of the uploaded
file. This value should not be larger than the number of servers on your grid.

A value of shares.happy <= k is allowed, but this is not guaranteed to provide any redundancy if
some servers fail or lose shares. It may still provide redundancy in practice if N is greater than the number
of connected servers, because in that case there will typically be more than one share on at least some
storage nodes. However, since a successful upload only guarantees that at least shares.happy shares
have been stored, the worst case is still that there is no redundancy.

5.4. Client Configuration 29

Tahoe-LAFS Documentation, Release 1.x

(Mutable files use a different share placement algorithm that does not currently consider this parameter.)
mutable.format = sdmf or mdmf

This value tells Tahoe-LAFS what the default mutable file format should be. If mutable.
format=sdmf, then newly created mutable files will be in the old SDMF format. This is desirable
for clients that operate on grids where some peers run older versions of Tahoe-LAFS, as these older
versions cannot read the new MDMF mutable file format. If mutable. format is mdmf, then newly
created mutable files will use the new MDMF format, which supports efficient in-place modification and
streaming downloads. You can overwrite this value using a special mutable-type parameter in the webapi.
If you do not specify a value here, Tahoe-LAFS will use SDMF for all newly-created mutable files.

Note that this parameter applies only to files, not to directories. Mutable directories, which are stored in
mutable files, are not controlled by this parameter and will always use SDMF. We may revisit this decision
in future versions of Tahoe-LAFS.

See Mutable Files for details about mutable file formats.
peers.preferred = (string, optional)

This is an optional comma-separated list of Node IDs of servers that will be tried first when selecting
storage servers for reading or writing.

Servers should be identified here by their Node ID as it appears in the web ui, underneath the server’s
nickname. For storage servers running tahoe versions >=1.10 (if the introducer is also running tahoe
>=1.10) this will be a “Node Key” (which is prefixed with ‘vO-°). For older nodes, it will be a TubID
instead. When a preferred server (and/or the introducer) is upgraded to 1.10 or later, clients must adjust
their configs accordingly.

Every node selected for upload, whether preferred or not, will still receive the same number of shares
(one, if there are N or more servers accepting uploads). Preferred nodes are simply moved to the front of
the server selection lists computed for each file.

This is useful if a subset of your nodes have different availability or connectivity characteristics than the
rest of the grid. For instance, if there are more than N servers on the grid, and K or more of them are at
a single physical location, it would make sense for clients at that location to prefer their local servers so
that they can maintain access to all of their uploads without using the internet.

In addition, see Storage Server Donations for a convention for donating to storage server operators.

5.5 Frontend Configuration

The Tahoe-LAFS client process can run a variety of frontend file access protocols. You will use these to create and
retrieve files from the Tahoe-LAFS file store. Configuration details for each are documented in the following protocol-
specific guides:

HTTP

Tahoe runs a webserver by default on port 3456. This interface provides a human-oriented “WUI”, with
pages to create, modify, and browse directories and files, as well as a number of pages to check on the
status of your Tahoe node. It also provides a machine-oriented “WAPI”, with a REST-ful HTTP interface
that can be used by other programs (including the CLI tools). Please see The Tahoe REST-ful Web API
for full details, and the web.port and web.static config variables above. Download status also
describes a few WUI status pages.

CLI

The main tahoe executable includes subcommands for manipulating the file store, upload-
ing/downloading files, and creating/running Tahoe nodes. See The Tahoe-LAFS CLI commands for details.

30 Chapter 5. Configuring a Tahoe-LAFS node

Tahoe-LAFS Documentation, Release 1.x

SFTP

Tahoe can also run SFTP servers, and map a username/password pair to a top-level Tahoe directory. See
Tahoe-LAFS SFTP Frontend for instructions on configuring this service, and the [sftpd] section of
tahoe.cfq.

5.6 Storage Server Configuration

[storage]
enabled = (boolean, optional)

If this is True, the node will run a storage server, offering space to other clients. If it is False, the node
will not run a storage server, meaning that no shares will be stored on this node. Use False for clients
who do not wish to provide storage service. The default value is True.

anonymous = (boolean, optional)

If this is True, the node will expose the storage server via Foolscap without any additional authentication
or authorization. The capability to use all storage services is conferred by knowledge of the Foolscap
fURL for the storage server which will be included in the storage server’s announcement. If it is False,
the node will not expose this and storage must be exposed using the storage server plugin system (see
Storage Server Plugin Configuration for details). The default value is True.

readonly = (boolean, optional)

If True, the node will run a storage server but will not accept any shares, making it effectively read-only.
Use this for storage servers that are being decommissioned: the storage/ directory could be mounted
read-only, while shares are moved to other servers. Note that this currently only affects immutable shares.
Mutable shares (used for directories) will be written and modified anyway. See ticket #390 for the current
status of this bug. The default value is False.

reserved_space = (str, optional)

If provided, this value defines how much disk space is reserved: the storage server will not accept any
share that causes the amount of free disk space to drop below this value. (The free space is measured by a
call to statvfs (2) on Unix, or GetDiskFreeSpaceEx on Windows, and is the space available to
the user account under which the storage server runs.)

This string contains a number, with an optional case-insensitive scale suffix, optionally followed by “B”
or “iB”. The supported scale suffixes are “K”, “M”, “G”, “T”, “P” and “E”, and a following “i” indicates
to use powers of 1024 rather than 1000. So “100MB”, “100 M”, “100000000B”, “100000000”, and
“100000kb” all mean the same thing. Likewise, “1MiB”, “1024KiB”, “1024 Ki”, and “1048576 B” all
mean the same thing.

“tahoe create-node” generates a tahoe.cfg with “reserved_space=1G”, but you may wish to
raise, lower, or remove the reservation to suit your needs.

expire.enabled =

expire.mode =
explire.override_lease_duration =
expire.cutoff_date =
expire.immutable =

expire.mutable =

5.6. Storage Server Configuration 31

https://tahoe-lafs.org/trac/tahoe-lafs/ticket/390

Tahoe-LAFS Documentation, Release 1.x

These settings control garbage collection, in which the server will delete shares that no longer have an
up-to-date lease on them. Please see Garbage Collection in Tahoe for full details.

storage_dir = (string, optional)
This specifies a directory where share files and other state pertaining to storage servers will be kept.

The default value is the st orage directory in the node’s base directory (i.e. BASEDIR/storage), but
it can be placed elsewhere. Relative paths will be interpreted relative to the node’s base directory.

In addition, see Storage Server Donations for a convention encouraging donations to storage server operators.

5.7 Storage Server Plugin Configuration

In addition to the built-in storage server, it is also possible to load and configure storage server plugins into Tahoe-
LAFS.

Plugins to load are specified in the [storage] section.
plugins = (string, optional)

This gives a comma-separated list of plugin names. Plugins named here will be loaded and offered to
clients. The default is for no such plugins to be loaded.

Each plugin can also be configured in a dedicated section. The section for each plugin is named after the plugin itself:

[storageserver.plugins.<plugin name>]

For example, the configuration section for a plugin named acme—-foo-vl is [storageserver.plugins.
acme—-foo-vl].

The contents of such sections are defined by the plugins themselves. Refer to the documentation provided with those
plugins.

5.8 Running A Helper

A “helper” is a regular client node that also offers the “upload helper” service.
[helper]
enabled = (boolean, optional)

If True, the node will run a helper (see The Tahoe Upload Helper for details). The helper’s contact FURL
will be placed in private/helper. furl, from which it can be copied to any clients that wish to use
it. Clearly nodes should not both run a helper and attempt to use one: do not create helper. furl and
also define [helper]enabled in the same node. The defaultis False.

32 Chapter 5. Configuring a Tahoe-LAFS node

Tahoe-LAFS Documentation, Release 1.x

5.9 Running An Introducer

The introducer node uses a different . tac file (named “introducer.tac”), and pays attention to the [node]
section, but not the others.

The Introducer node maintains some different state than regular client nodes.
BASEDIR/private/introducer. furl

This is generated the first time the introducer node is started, and used again on subsequent runs, to give
the introduction service a persistent long-term identity. This file should be published and copied into new
client nodes before they are started for the first time.

5.10 Other Files in BASEDIR

Some configuration is not kept in tahoe . cfg, for the following reasons:
* it doesn’t fit into the INI format of tahoe.cfg (e.g. private/servers.yaml)
* it is generated by the node at startup, e.g. encryption keys. The node never writes to tahoe.cfg.
* it is generated by user action, e.g. the “tahoe create-alias” command.
In addition, non-configuration persistent state is kept in the node’s base directory, next to the configuration knobs.
This section describes these other files.
private/node.pem

This contains an SSL private-key certificate. The node generates this the first time it is started, and re-uses
it on subsequent runs. This certificate allows the node to have a cryptographically-strong identifier (the
Foolscap “TubID”), and to establish secure connections to other nodes.

storage/

Nodes that host StorageServers will create this directory to hold shares of files on behalf of other clients.
There will be a directory underneath it for each StorageIndex for which this node is holding shares. There
is also an “incoming” directory where partially-completed shares are held while they are being received.
This location may be overridden in tahoe . cfg.

tahoe-client.tac

This file defines the client, by constructing the actual Client instance each time the node is started.
It is used by the “twistd” daemonization program (in the —y mode), which is run internally by
the “tahoe start” command. This file is created by the “tahoe create-node” or “tahoe
create-client” commands.

tahoe-introducer.tac

This file is used to construct an introducer, and is created by the “tahoe create—-introducer”
command.

private/control. furl

This file contains a FURL that provides access to a control port on the client node, from which files can
be uploaded and downloaded. This file is created with permissions that prevent anyone else from reading
it (on operating systems that support such a concept), to insure that only the owner of the client node can
use this feature. This port is intended for debugging and testing use.

private/logport.furl

5.9. Running An Introducer 33

Tahoe-LAFS Documentation, Release 1.x

This file contains a FURL that provides access to a ‘log port’ on the client node, from which operational
logs can be retrieved. Do not grant logport access to strangers, because occasionally secret information
may be placed in the logs.

private/helper. furl

If the node is running a helper (for use by other clients), its contact FURL will be placed here. See The
Tahoe Upload Helper for more details.

private/root_dir.cap (optional)

The command-line tools will read a directory cap out of this file and use it, if you don’t specify a ‘—dir-cap’
option or if you specify ‘—dir-cap=root’.

private/convergence (automatically generated)

An added secret for encrypting immutable files. Everyone who has this same string in their private/
convergence file encrypts their immutable files in the same way when uploading them. This causes
identical files to “converge” — to share the same storage space since they have identical ciphertext — which
conserves space and optimizes upload time, but it also exposes file contents to the possibility of a brute-
force attack by people who know that string. In this attack, if the attacker can guess most of the contents
of a file, then they can use brute-force to learn the remaining contents.

So the set of people who know your private/convergence string is the set of people who converge
their storage space with you when you and they upload identical immutable files, and it is also the set of
people who could mount such an attack.

The content of the private/convergence file is a base-32 encoded string. If the file doesn’t exist,
then when the Tahoe-LAFS client starts up it will generate a random 256-bit string and write the base-32
encoding of this string into the file. If you want to converge your immutable files with as many people as
possible, put the empty string (so that private/convergence is a zero-length file).

5.11 Introducer Definitions

The private/introducers.yaml file defines Introducers. Choose a locally-unique “petname” for each one
then define their FURLs in private/introducers.yaml like this:

introducers:
petname?2:
furl: "FURL2"
petname3:
furl: "FURL3"

Servers will announce themselves to all configured introducers. Clients will merge the announcements they receive
from all introducers. Nothing will re-broadcast an announcement (i.e. telling introducer 2 about something you heard
from introducer 1).

If you omit the introducer definitions from introducers.yaml, the node will not use an Introducer at all. Such
“introducerless” clients must be configured with static servers (described below), or they will not be able to upload
and download files.

34 Chapter 5. Configuring a Tahoe-LAFS node

Tahoe-LAFS Documentation, Release 1.x

5.12 Static Server Definitions

The private/servers.yaml file defines “static servers”: those which are not announced through the Introducer.
This can also control how we connect to those servers.

Most clients do not need this file. It is only necessary if you want to use servers which are (for some specialized
reason) not announced through the Introducer, or to connect to those servers in different ways. You might do this to
“freeze” the server list: use the Introducer for a while, then copy all announcements into servers.yaml, then stop
using the Introducer entirely. Or you might have a private server that you don’t want other users to learn about (via the
Introducer). Or you might run a local server which is announced to everyone else as a Tor onion address, but which
you can connect to directly (via TCP).

The file syntax is YAML, with a top-level dictionary named st orage. Other items may be added in the future.

The st orage dictionary takes keys which are server-ids, and values which are dictionaries with two keys: ann and
connections. The ann value is a dictionary which will be used in lieu of the introducer announcement, so it can
be populated by copying the ann dictionary from NODEDIR/introducer_cache.yaml.

The server-id can be any string, but ideally you should use the public key as published by the server. Each server
displays this as “Node ID:” in the top-right corner of its “WUI” web welcome page. It can also be obtained from other
client nodes, which record it as key_s: in their introducer_cache.yaml file. The format is “v0-" followed
by 52 base32 characters like so:

v0-c2ng2pbrmxmlwpijn3mr72ckk5fmzk6uxfénhowyosaubrt 6y5mg

The ann dictionary really only needs one key:

* anonymous-storage-FURL: how we connect to the server
(note that other important keys may be added in the future, as Accounting and HTTP-based servers are implemented)
Optional keys include:

* nickname: the name of this server, as displayed on the Welcome page server list

* permutation-seed-base32: this controls how shares are mapped to servers. This is normally computed
from the server-ID, but can be overridden to maintain the mapping for older servers which used to use Foolscap
TubIDs as server-IDs. If your selected server-ID cannot be parsed as a public key, it will be hashed to compute
the permutation seed. This is fine as long as all clients use the same thing, but if they don’t, then your client
will disagree with the other clients about which servers should hold each share. This will slow downloads for
everybody, and may cause additional work or consume extra storage when repair operations don’t converge.

* anything else from the introducer_cache.yaml announcement, like my-version, which is displayed
on the Welcome page server list

For example, a private static server could be defined with a private/servers.yamnl file like this:

storage:
v0-4uazse3xbouubgpkb7tel2bmébpead jhuigdhgcuvvse7hugtsia:
ann:
nickname: my-server-1
anonymous—-storage—-FURL: pb://u33mé4y7klhz3bypswgkozwetvabelhxt@tcp:8.8.8.8:51298/
—eiu2i7p6démmd4ihmss7ieoubhac3wnéb

Or, if you’re feeling really lazy:

storage:
my-serverid-1:
ann:
anonymous—-storage-FURL: pb://u33mdy7klhz3bypswgkozwetvabelhxt@tcp:8.8.8.8:51298/
—eiu2i7pb6dbmm4ihmss7ieouShac3wn6éb (continues on next page)

5.12. Static Server Definitions 35

http://yaml.org/

Tahoe-LAFS Documentation, Release 1.x

(continued from previous page)

|

5.12.1 Overriding Connection-Handlers for Static Servers

A connections entry will override the default connection-handler mapping (as established by tahoe.cfg
[connections]). This can be used to build a “Tor-mostly client”: one which is restricted to use Tor for all con-
nections, except for a few private servers to which normal TCP connections will be made. To override the published
announcement (and thus avoid connecting twice to the same server), the server ID must exactly match.

tahoe.cfqg:

[connections]
this forces the use of Tor for all "tcp" hints
tcp = tor

private/servers.yaml:

storage:
v0-c2ng2pbrmxmlwpijn3mr72ckk5fmzk6uxfbonhowyosaubrt6ybmqg:
ann:
nickname: my-server-1
anonymous-storage-FURL: pb://u33mdy7klhz3bypswgkozwetvabelhxt@tcp:10.1.2.
—3:51298/eiu2i7p6domm4ihmss7ieouShac3wn6b
connections:
this overrides the tcp=tor from tahoe.cfg, for just this server
tcp: tcp

The connections table is needed to override the tcp = tor mapping that comes from tahoe.cfg. Without
it, the client would attempt to use Tor to connect to 10.1 .2 .3, which would fail because it is a local/non-routeable
(RFC1918) address.

5.13 Other files

logs/

Each Tahoe-LAFS node creates a directory to hold the log messages produced as the node runs. These
logfiles are created and rotated by the “twistd” daemonization program, so logs/twistd.log
will contain the most recent messages, Logs/twistd.log.1 will contain the previous ones, Logs/
twistd.log.2 will be older still, and so on. twistd rotates logfiles after they grow beyond 1MB in
size. If the space consumed by logfiles becomes troublesome, they should be pruned: a cron job to delete
all files that were created more than a month ago in this 1ogs/ directory should be sufficient.

my_nodeid

this is written by all nodes after startup, and contains a base32-encoded (i.e. human-readable) NodeID
that identifies this specific node. This NodelD is the same string that gets displayed on the web page (in
the “which peers am I connected to” list), and the shortened form (the first few characters) is recorded in
various log messages.

access.blacklist

Gateway nodes may find it necessary to prohibit access to certain files. The web-API has a facility to
block access to filecaps by their storage index, returning a 403 “Forbidden” error instead of the original
file. For more details, see the “Access Blacklist” section of The Tahoe REST-ful Web API.

36 Chapter 5. Configuring a Tahoe-LAFS node

Tahoe-LAFS Documentation, Release 1.x

5.14 Example

The following is a sample tahoe . cfg file, containing values for some of the keys described in the previous section.
Note that this is not a recommended configuration (most of these are not the default values), merely a legal one.

[node]

nickname = Bob's Tahoe-LAFS Node

tub.port = tcp:34912

tub.location = tcp:123.45.67.89:8098,tcp:44.55.66.77:8098

web.port = tcp:3456

log_gatherer.furl = pb://sokljdyTeok5c3xkmjeqpwll192.168.69.247:44801/egpwgtzm

timeout.keepalive = 240
timeout.disconnect = 1800
[client]

helper.furl = pb://ggtibSssokljdyT7eok5c3xkmj@tcp:helper.tahoe.example:7054/kk81lhr

[storage]

enabled = True

readonly = True
reserved_space = 10000000000

[helper]
enabled = True

To be introduced to storage servers, here is a sample private/introducers.yaml which can be used in con-
junction:

introducers:
examplegrid:
furl: "pb://ok45ssokljdyT7eok5c3xkmij@tcp:tahoe.example:44801/1ii3uumo”

5.15 Old Configuration Files

Tahoe-LAFS releases before v1.3.0 had no tahoe. cfg file, and used distinct files for each item. This is no longer
supported and if you have configuration in the old format you must manually convert it to the new format for Tahoe-
LAFS to detect it. See Old Configuration Files.

5.14. Example 37

Tahoe-LAFS Documentation, Release 1.x

38 Chapter 5. Configuring a Tahoe-LAFS node

CHAPTER
SIX

TAHOE-LAFS ARCHITECTURE

—

Overview

The Key-Value Store

File Encoding

Capabilities

Server Selection

Swarming Download, Trickling Upload
The File Store Layer

Leases, Refreshing, Garbage Collection

File Repairer

© Y ® =N 0k WD

—

Security

[
—

. Reliability

6.1 Overview

(See the docs/specifications directory for more details.)
There are three layers: the key-value store, the file store, and the application.

The lowest layer is the key-value store. The keys are “capabilities” — short ASCII strings — and the values are sequences
of data bytes. This data is encrypted and distributed across a number of nodes, such that it will survive the loss of most
of the nodes. There are no hard limits on the size of the values, but there may be performance issues with extremely
large values (just due to the limitation of network bandwidth). In practice, values as small as a few bytes and as large
as tens of gigabytes are in common use.

The middle layer is the decentralized file store: a directed graph in which the intermediate nodes are directories and
the leaf nodes are files. The leaf nodes contain only the data — they contain no metadata other than the length in bytes.
The edges leading to leaf nodes have metadata attached to them about the file they point to. Therefore, the same file
may be associated with different metadata if it is referred to through different edges.

The top layer consists of the applications using the file store. Allmydata.com used it for a backup service: the appli-
cation periodically copies files from the local disk onto the decentralized file store. We later provide read-only access
to those files, allowing users to recover them. There are several other applications built on top of the Tahoe-LAFS file
store (see the RelatedProjects page of the wiki for a list).

39

https://github.com/tahoe-lafs/tahoe-lafs/tree/master/docs/specifications
https://tahoe-lafs.org/trac/tahoe-lafs/wiki/RelatedProjects

Tahoe-LAFS Documentation, Release 1.x

6.2 The Key-Value Store

The key-value store is implemented by a grid of Tahoe-LAFS storage servers — user-space processes. Tahoe-LAFS
storage clients communicate with the storage servers over TCP.

Storage servers hold data in the form of “shares”. Shares are encoded pieces of files. There are a configurable number
of shares for each file, 10 by default. Normally, each share is stored on a separate server, but in some cases a single
server can hold multiple shares of a file.

Nodes learn about each other through an “introducer”. Each server connects to the introducer at startup and announces
its presence. Each client connects to the introducer at startup, and receives a list of all servers from it. Each client then
connects to every server, creating a “bi-clique” topology. In the current release, nodes behind NAT boxes will connect
to all nodes that they can open connections to, but they cannot open connections to other nodes behind NAT boxes.
Therefore, the more nodes behind NAT boxes, the less the topology resembles the intended bi-clique topology.

The introducer is a Single Point of Failure (“SPoF”), in that clients who never connect to the introducer will be unable
to connect to any storage servers, but once a client has been introduced to everybody, it does not need the introducer
again until it is restarted. The danger of a SPoF is further reduced in two ways. First, the introducer is defined by a
hostname and a private key, which are easy to move to a new host in case the original one suffers an unrecoverable
hardware problem. Second, even if the private key is lost, clients can be reconfigured to use a new introducer.

For future releases, we have plans to decentralize introduction, allowing any server to tell a new client about all the
others.

6.3 File Encoding

When a client stores a file on the grid, it first encrypts the file. It then breaks the encrypted file into small segments,
in order to reduce the memory footprint, and to decrease the lag between initiating a download and receiving the first
part of the file; for example the lag between hitting “play” and a movie actually starting.

The client then erasure-codes each segment, producing blocks of which only a subset are needed to reconstruct the
segment (3 out of 10, with the default settings).

It sends one block from each segment to a given server. The set of blocks on a given server constitutes a “share”.
Therefore a subset of the shares (3 out of 10, by default) are needed to reconstruct the file.

A hash of the encryption key is used to form the “storage index”, which is used for both server selection (described
below) and to index shares within the Storage Servers on the selected nodes.

The client computes secure hashes of the ciphertext and of the shares. It uses Merkle Trees so that it is possible to
verify the correctness of a subset of the data without requiring all of the data. For example, this allows you to verify
the correctness of the first segment of a movie file and then begin playing the movie file in your movie viewer before
the entire movie file has been downloaded.

These hashes are stored in a small datastructure named the Capability Extension Block which is stored on the storage
servers alongside each share.

The capability contains the encryption key, the hash of the Capability Extension Block, and any encoding parameters
necessary to perform the eventual decoding process. For convenience, it also contains the size of the file being stored.

To download, the client that wishes to turn a capability into a sequence of bytes will obtain the blocks from storage
servers, use erasure-decoding to turn them into segments of ciphertext, use the decryption key to convert that into
plaintext, then emit the plaintext bytes to the output target.

40 Chapter 6. Tahoe-LAFS Architecture

http://systems.cs.colorado.edu/grunwald/Classes/Fall2003-InformationStorage/Papers/merkle-tree.pdf

Tahoe-LAFS Documentation, Release 1.x

6.4 Capabilities

Capabilities to immutable files represent a specific set of bytes. Think of it like a hash function: you feed in a bunch
of bytes, and you get out a capability, which is deterministically derived from the input data: changing even one bit of
the input data will result in a completely different capability.

Read-only capabilities to mutable files represent the ability to get a set of bytes representing some version of the file,
most likely the latest version. Each read-only capability is unique. In fact, each mutable file has a unique public/private
key pair created when the mutable file is created, and the read-only capability to that file includes a secure hash of the
public key.

Read-write capabilities to mutable files represent the ability to read the file (just like a read-only capability) and also to
write a new version of the file, overwriting any extant version. Read-write capabilities are unique — each one includes
the secure hash of the private key associated with that mutable file.

The capability provides both “location” and “identification”: you can use it to retrieve a set of bytes, and then you can
use it to validate (“identify”) that these potential bytes are indeed the ones that you were looking for.

The “key-value store” layer doesn’t include human-meaningful names. Capabilities sit on the “global+secure” edge
of Zooko’s Triangle. They are self-authenticating, meaning that nobody can trick you into accepting a file that doesn’t
match the capability you used to refer to that file. The file store layer (described below) adds human-meaningful names
atop the key-value layer.

6.5 Server Selection

When a file is uploaded, the encoded shares are sent to some servers. But to which ones? The “server selection”
algorithm is used to make this choice.

The storage index is used to consistently-permute the set of all servers nodes (by sorting them by
HASH (storage_index+nodeid)). Each file gets a different permutation, which (on average) will evenly dis-
tribute shares among the grid and avoid hotspots. Each server has announced its available space when it connected to
the introducer, and we use that available space information to remove any servers that cannot hold an encoded share
for our file. Then we ask some of the servers thus removed if they are already holding any encoded shares for our file;
we use this information later. (We ask any servers which are in the first 2*"N"" elements of the permuted list.)

We then use the permuted list of servers to ask each server, in turn, if it will hold a share for us (a share that was not
reported as being already present when we talked to the full servers earlier, and that we have not already planned to
upload to a different server). We plan to send a share to a server by sending an ‘allocate_buckets() query’ to the server
with the number of that share. Some will say yes they can hold that share, others (those who have become full since
they announced their available space) will say no; when a server refuses our request, we take that share to the next
server on the list. In the response to allocate_buckets() the server will also inform us of any shares of that file that it
already has. We keep going until we run out of shares that need to be stored. At the end of the process, we’ll have a
table that maps each share number to a server, and then we can begin the encode and push phase, using the table to
decide where each share should be sent.

Most of the time, this will result in one share per server, which gives us maximum reliability. If there are fewer writable
servers than there are unstored shares, we’ll be forced to loop around, eventually giving multiple shares to a single
server.

If we have to loop through the node list a second time, we accelerate the query process, by asking each node to hold
multiple shares on the second pass. In most cases, this means we’ll never send more than two queries to any given
node.

If a server is unreachable, or has an error, or refuses to accept any of our shares, we remove it from the permuted
list, so we won’t query it again for this file. If a server already has shares for the file we’re uploading, we add that

6.4. Capabilities a

https://en.wikipedia.org/wiki/Zooko%27s_triangle

Tahoe-LAFS Documentation, Release 1.x

information to the share-to-server table. This lets us do less work for files which have been uploaded once before,
while making sure we still wind up with as many shares as we desire.

Before a file upload is called successful, it has to pass an upload health check. For immutable files, we check to
see that a condition called ‘servers-of-happiness’ is satisfied. When satisfied, ‘servers-of-happiness’ assures us that
enough pieces of the file are distributed across enough servers on the grid to ensure that the availability of the file will
not be affected if a few of those servers later fail. For mutable files and directories, we check to see that all of the
encoded shares generated during the upload process were successfully placed on the grid. This is a weaker check than
‘servers-of-happiness’; it does not consider any information about how the encoded shares are placed on the grid, and
cannot detect situations in which all or a majority of the encoded shares generated during the upload process reside on
only one storage server. We hope to extend ‘servers-of-happiness’ to mutable files in a future release of Tahoe-LAFS.
If, at the end of the upload process, the appropriate upload health check fails, the upload is considered a failure.

The current defaults use k = 3, servers_of_happiness =7, and N = 10. N = 10 means that we’ll try to place
10 shares. k = 3 means that we need any three shares to recover the file. servers_of_happiness =7 means
that we’ll consider an immutable file upload to be successful if we can place shares on enough servers that there are 7
different servers, the correct functioning of any k of which guarantee the availability of the immutable file.

N =10 and k = 3 means there is a 3.3x expansion factor. On a small grid, you should set N about equal to the number of
storage servers in your grid; on a large grid, you might set it to something smaller to avoid the overhead of contacting
every server to place a file. In either case, you should then set k such that N/k reflects your desired availability goals.
The best value for servers_of_happiness will depend on how you use Tahoe-LAFS. In a friendnet with a
variable number of servers, it might make sense to set it to the smallest number of servers that you expect to have
online and accepting shares at any given time. In a stable environment without much server churn, it may make sense
to set servers_of_happiness =N.

When downloading a file, the current version just asks all known servers for any shares they might have. Once it has
received enough responses that it knows where to find the needed k shares, it downloads at least the first segment from
those servers. This means that it tends to download shares from the fastest servers. If some servers had more than one
share, it will continue sending “Do You Have Block™ requests to other servers, so that it can download subsequent
segments from distinct servers (sorted by their DYHB round-trip times), if possible.

Sfuture work

A future release will use the server selection algorithm to reduce the number of queries that must be sent
out.

Other peer-node selection algorithms are possible. One earlier version (known as “Tahoe 3”) used the
permutation to place the nodes around a large ring, distributed the shares evenly around the same ring,
then walked clockwise from O with a basket. Each time it encountered a share, it put it in the basket,
each time it encountered a server, give it as many shares from the basket as they’d accept. This reduced
the number of queries (usually to 1) for small grids (where N is larger than the number of nodes), but
resulted in extremely non-uniform share distribution, which significantly hurt reliability (sometimes the
permutation resulted in most of the shares being dumped on a single node).

Another algorithm (known as “denver airport”') uses the permuted hash to decide on an approximate
target for each share, then sends lease requests via Chord routing. The request includes the contact
information of the uploading node, and asks that the node which eventually accepts the lease should
contact the uploader directly. The shares are then transferred over direct connections rather than through
multiple Chord hops. Download uses the same approach. This allows nodes to avoid maintaining a large
number of long-term connections, at the expense of complexity and latency.

I all of these names are derived from the location where they were concocted, in this case in a car ride from Boulder to DEN. To be precise,
“Tahoe 1” was an unworkable scheme in which everyone who holds shares for a given file would form a sort of cabal which kept track of all
the others, “Tahoe 2” is the first-100-nodes in the permuted hash described in this document, and “Tahoe 3” (or perhaps “Potrero hill 1”’) was the
abandoned ring-with-many-hands approach.

42 Chapter 6. Tahoe-LAFS Architecture

Tahoe-LAFS Documentation, Release 1.x

6.6 Swarming Download, Trickling Upload

Because the shares being downloaded are distributed across a large number of nodes, the download process will
pull from many of them at the same time. The current encoding parameters require 3 shares to be retrieved for
each segment, which means that up to 3 nodes will be used simultaneously. For larger networks, 8-of-22 encoding
could be used, meaning 8 nodes can be used simultaneously. This allows the download process to use the sum of
the available nodes’ upload bandwidths, resulting in downloads that take full advantage of the common 8x disparity
between download and upload bandwith on modern ADSL lines.

On the other hand, uploads are hampered by the need to upload encoded shares that are larger than the original data
(3.3x larger with the current default encoding parameters), through the slow end of the asymmetric connection. This
means that on a typical 8x ADSL line, uploading a file will take about 32 times longer than downloading it again later.

Smaller expansion ratios can reduce this upload penalty, at the expense of reliability (see Reliability, below). By
using an “upload helper”, this penalty is eliminated: the client does a 1x upload of encrypted data to the helper, then
the helper performs encoding and pushes the shares to the storage servers. This is an improvement if the helper has
significantly higher upload bandwidth than the client, so it makes the most sense for a commercially-run grid for which
all of the storage servers are in a colo facility with high interconnect bandwidth. In this case, the helper is placed in
the same facility, so the helper-to-storage-server bandwidth is huge.

See The Tahoe Upload Helper for details about the upload helper.

6.7 The File Store Layer

The “file store” layer is responsible for mapping human-meaningful pathnames (directories and filenames) to pieces
of data. The actual bytes inside these files are referenced by capability, but the file store layer is where the directory
names, file names, and metadata are kept.

The file store layer is a graph of directories. Each directory contains a table of named children. These children are
either other directories or files. All children are referenced by their capability.

A directory has two forms of capability: read-write caps and read-only caps. The table of children inside the directory
has a read-write and read-only capability for each child. If you have a read-only capability for a given directory, you
will not be able to access the read-write capability of its children. This results in “transitively read-only” directory
access.

By having two different capabilities, you can choose which you want to share with someone else. If you create a new
directory and share the read-write capability for it with a friend, then you will both be able to modify its contents.
If instead you give them the read-only capability, then they will not be able to modify the contents. Any capability
that you receive can be linked in to any directory that you can modify, so very powerful shared+published directory
structures can be built from these components.

This structure enable individual users to have their own personal space, with links to spaces that are shared with
specific other users, and other spaces that are globally visible.

6.6. Swarming Download, Trickling Upload 43

Tahoe-LAFS Documentation, Release 1.x

6.8 Leases, Refreshing, Garbage Collection

When a file or directory in the file store is no longer referenced, the space that its shares occupied on each storage
server can be freed, making room for other shares. Tahoe-LAFS uses a garbage collection (“GC”) mechanism to
implement this space-reclamation process. Each share has one or more “leases”, which are managed by clients who
want the file/directory to be retained. The storage server accepts each share for a pre-defined period of time, and is
allowed to delete the share if all of the leases are cancelled or allowed to expire.

Garbage collection is not enabled by default: storage servers will not delete shares without being explicitly configured
to do so. When GC is enabled, clients are responsible for renewing their leases on a periodic basis at least frequently
enough to prevent any of the leases from expiring before the next renewal pass.

See Garbage Collection in Tahoe for further information, and for how to configure garbage collection.

6.9 File Repairer

Shares may go away because the storage server hosting them has suffered a failure: either temporary downtime
(affecting availability of the file), or a permanent data loss (affecting the preservation of the file). Hard drives crash,
power supplies explode, coffee spills, and asteroids strike. The goal of a robust distributed file store is to survive these
setbacks.

To work against this slow, continual loss of shares, a File Checker is used to periodically count the number of shares
still available for any given file. A more extensive form of checking known as the File Verifier can download the
ciphertext of the target file and perform integrity checks (using strong hashes) to make sure the data is still intact.
When the file is found to have decayed below some threshold, the File Repairer can be used to regenerate and re-
upload the missing shares. These processes are conceptually distinct (the repairer is only run if the checker/verifier
decides it is necessary), but in practice they will be closely related, and may run in the same process.

The repairer process does not get the full capability of the file to be maintained: it merely gets the “repairer capability”
subset, which does not include the decryption key. The File Verifier uses that data to find out which nodes ought to
hold shares for this file, and to see if those nodes are still around and willing to provide the data. If the file is not
healthy enough, the File Repairer is invoked to download the ciphertext, regenerate any missing shares, and upload
them to new nodes. The goal of the File Repairer is to finish up with a full set of N shares.

There are a number of engineering issues to be resolved here. The bandwidth, disk 10, and CPU time consumed by
the verification/repair process must be balanced against the robustness that it provides to the grid. The nodes involved
in repair will have very different access patterns than normal nodes, such that these processes may need to be run on
hosts with more memory or network connectivity than usual. The frequency of repair will directly affect the resources
consumed. In some cases, verification of multiple files can be performed at the same time, and repair of files can be
delegated off to other nodes.

future work

Currently there are two modes of checking on the health of your file: “Checker” simply asks storage
servers which shares they have and does nothing to try to verify that they aren’t lying. “Verifier” down-
loads and cryptographically verifies every bit of every share of the file from every server, which costs a lot
of network and CPU. A future improvement would be to make a random-sampling verifier which down-
loads and cryptographically verifies only a few randomly-chosen blocks from each server. This would
require much less network and CPU but it could make it extremely unlikely that any sort of corruption
— even malicious corruption intended to evade detection — would evade detection. This would be an in-
stance of a cryptographic notion called “Proof of Retrievability”. Note that to implement this requires no
change to the server or to the cryptographic data structure — with the current data structure and the current
protocol it is up to the client which blocks they choose to download, so this would be solely a change in
client behavior.

44 Chapter 6. Tahoe-LAFS Architecture

Tahoe-LAFS Documentation, Release 1.x

6.10 Security

The design goal for this project is that an attacker may be able to deny service (i.e. prevent you from recovering a file
that was uploaded earlier) but can accomplish none of the following three attacks:

1) violate confidentiality: the attacker gets to view data to which you have not granted them access

2) violate integrity: the attacker convinces you that the wrong data is actually the data you were intending to
retrieve

3) violate unforgeability: the attacker gets to modify a mutable file or directory (either the pathnames or the file
contents) to which you have not given them write permission

Integrity (the promise that the downloaded data will match the uploaded data) is provided by the hashes embedded in
the capability (for immutable files) or the digital signature (for mutable files). Confidentiality (the promise that the
data is only readable by people with the capability) is provided by the encryption key embedded in the capability (for
both immutable and mutable files). Data availability (the hope that data which has been uploaded in the past will be
downloadable in the future) is provided by the grid, which distributes failures in a way that reduces the correlation
between individual node failure and overall file recovery failure, and by the erasure-coding technique used to generate
shares.

Many of these security properties depend upon the usual cryptographic assumptions: the resistance of AES and RSA
to attack, the resistance of SHA-256 to collision attacks and pre-image attacks, and upon the proximity of 2/-128 and
27-256 to zero. A break in AES would allow a confidentiality violation, a collision break in SHA-256 would allow a
consistency violation, and a break in RSA would allow a mutability violation.

There is no attempt made to provide anonymity, neither of the origin of a piece of data nor the identity of the subsequent
downloaders. In general, anyone who already knows the contents of a file will be in a strong position to determine
who else is uploading or downloading it. Also, it is quite easy for a sufficiently large coalition of nodes to correlate
the set of nodes who are all uploading or downloading the same file, even if the attacker does not know the contents
of the file in question.

Also note that the file size and (when convergence is being used) a keyed hash of the plaintext are not protected. Many
people can determine the size of the file you are accessing, and if they already know the contents of a given file, they
will be able to determine that you are uploading or downloading the same one.

The capability-based security model is used throughout this project. Directory operations are expressed in terms of
distinct read- and write- capabilities. Knowing the read-capability of a file is equivalent to the ability to read the
corresponding data. The capability to validate the correctness of a file is strictly weaker than the read-capability
(possession of read-capability automatically grants you possession of validate-capability, but not vice versa). These
capabilities may be expressly delegated (irrevocably) by simply transferring the relevant secrets.

The application layer can provide whatever access model is desired, built on top of this capability access model.

6.11 Reliability

File encoding and peer-node selection parameters can be adjusted to achieve different goals. Each choice results in a
number of properties; there are many tradeoffs.

First, some terms: the erasure-coding algorithm is described as k-out-of-N (for this release, the default values are k
=3 and N = 10). Each grid will have some number of nodes; this number will rise and fall over time as nodes join,
drop out, come back, and leave forever. Files are of various sizes, some are popular, others are unpopular. Nodes have
various capacities, variable upload/download bandwidths, and network latency. Most of the mathematical models that
look at node failure assume some average (and independent) probability ‘P’ of a given node being available: this can
be high (servers tend to be online and available >90% of the time) or low (laptops tend to be turned on for an hour then
disappear for several days). Files are encoded in segments of a given maximum size, which affects memory usage.

6.10. Security 45

Tahoe-LAFS Documentation, Release 1.x

The ratio of N/k is the “expansion factor”. Higher expansion factors improve reliability very quickly (the binomial
distribution curve is very sharp), but consumes much more grid capacity. When P=50%, the absolute value of k affects
the granularity of the binomial curve (1-out-of-2 is much worse than 50-out-of-100), but high values asymptotically
approach a constant (i.e. 500-0f-1000 is not much better than 50-of-100). When P is high and the expansion factor
is held at a constant, higher values of k and N give much better reliability (for P=99%, 50-out-of-100 is much much
better than 5-of-10, roughly 10750 times better), because there are more shares that can be lost without losing the file.

Likewise, the total number of nodes in the network affects the same granularity: having only one node means a single
point of failure, no matter how many copies of the file you make. Independent nodes (with uncorrelated failures)
are necessary to hit the mathematical ideals: if you have 100 nodes but they are all in the same office building, then
a single power failure will take out all of them at once. Pseudospoofing, also called a “Sybil Attack”, is where a
single attacker convinces you that they are actually multiple servers, so that you think you are using a large number
of independent nodes, but in fact you have a single point of failure (where the attacker turns off all their machines at
once). Large grids, with lots of truly independent nodes, will enable the use of lower expansion factors to achieve the
same reliability, but will increase overhead because each node needs to know something about every other, and the
rate at which nodes come and go will be higher (requiring network maintenance traffic). Also, the File Repairer work
will increase with larger grids, although then the job can be distributed out to more nodes.

Higher values of N increase overhead: more shares means more Merkle hashes that must be included with the data,
and more nodes to contact to retrieve the shares. Smaller segment sizes reduce memory usage (since each segment
must be held in memory while erasure coding runs) and improves “alacrity” (since downloading can validate a smaller
piece of data faster, delivering it to the target sooner), but also increase overhead (because more blocks means more
Merkle hashes to validate them).

In general, small private grids should work well, but the participants will have to decide between storage overhead
and reliability. Large stable grids will be able to reduce the expansion factor down to a bare minimum while still
retaining high reliability, but large unstable grids (where nodes are coming and going very quickly) may require more
repair/verification bandwidth than actual upload/download traffic.

46 Chapter 6. Tahoe-LAFS Architecture

CHAPTER
SEVEN

THE TAHOE-LAFS CLI COMMANDS

1. Overview
2. CLI Command Overview
1. Unicode Support
3. Node Management
4. File Store Manipulation
1. Starting Directories
2. Command Syntax Summary
3. Command Examples
5. Storage Grid Maintenance

6. Debugging

7.1 Overview

Tahoe-LAFS provides a single executable named “tahoe”, which can be used to create and manage client/server
nodes, manipulate the file store, and perform several debugging/maintenance tasks. This executable is installed into
your virtualenv when you run pip install tahoe-lafs.

7.2 CLI Command Overview

The “tahoe” tool provides access to three categories of commands.
* node management: create a client/server node, start/stop/restart it
* file store manipulation: list files, upload, download, unlink, rename
* debugging: unpack cap-strings, examine share files

To get a list of all commands, just run “t ahoe” with no additional arguments. “tahoe —--help” might also provide
something useful.

Running “tahoe --version” will display a list of version strings, starting with the “allmydata” module (which
contains the majority of the Tahoe-LAFS functionality) and including versions for a number of dependent libraries,
like Twisted, Foolscap, cryptography, and zfec. “tahoe --version-and-path” will also show the path from
which each library was imported.

47

Tahoe-LAFS Documentation, Release 1.x

On Unix systems, the shell expands filename wildcards (' ' and '? ') before the program is able to read them,
which may produce unexpected results for many tahoe comands. We recommend, if you use wildcards, to start
the path with “. /”, for example “tahoe cp -r ./ somewhere:”. This prevents the expanded filename from
being interpreted as an option or as an alias, allowing filenames that start with a dash or contain colons to be handled
correctly.

On Windows, a single letter followed by a colon is treated as a drive specification rather than an alias (and is invalid
unless a local path is allowed in that context). Wildcards cannot be used to specify multiple filenames to tahoe on
Windows.

7.2.1 Unicode Support

As of Tahoe-LAFS v1.7.0 (v1.8.0 on Windows), the tahoe tool supports non-ASCII characters in command lines
and output. On Unix, the command-line arguments are assumed to use the character encoding specified by the current
locale (usually given by the LANG environment variable).

If a name to be output contains control characters or characters that cannot be represented in the encoding used on your
terminal, it will be quoted. The quoting scheme used is similar to POSIX shell quoting: in a “double-quoted” string,
backslashes introduce escape sequences (like those in Python strings), but in a ‘single-quoted’ string all characters
stand for themselves. This quoting is only used for output, on all operating systems. Your shell interprets any quoting
or escapes used on the command line.

7.3 Node Management

“tahoe create-node [NODEDIR]” is the basic make-a-new-node command. It creates a new directory
and populates it with files that will allow the “tahoe run” and related commands to use it later on. tahoe
create-node creates nodes that have client functionality (upload/download files), web API services (controlled
by the ‘[node]web.port’ configuration), and storage services (unless ——no—-storage is specified).

NODEDIR defaults to ~/ . tahoe/ , and newly-created nodes default to publishing a web server on port 3456 (limited
to the loopback interface, at 127.0.0.1, to restrict access to other programs on the same host). All of the other “tahoe”
subcommands use corresponding defaults.

“tahoe create-client [NODEDIR]” creates a node with no storage service. That is, it behaves like “tahoe
create-node --no-storage [NODEDIR]”. (This is achange from versions prior to v1.6.0.)

“tahoe create-introducer [NODEDIR]” is used to create the Introducer node. This node provides intro-
duction services and nothing else. When started, this node will produce a private/introducer. furl file,
which should be published to all clients.

7.3.1 Running Nodes

No matter what kind of node you created, the correct way to run it is to use the tahoe run command. “tahoe
run [NODEDIR]” will start a previously-created node in the foreground. This command functions the same way
on all platforms and logs to stdout. If you want to run the process as a daemon, it is recommended that you use your
favourite daemonization tool.

48 Chapter 7. The Tahoe-LAFS CLI commands

http://pubs.opengroup.org/onlinepubs/009695399/utilities/xcu_chap02.html

Tahoe-LAFS Documentation, Release 1.x

7.4 File Store Manipulation

These commands let you exmaine a Tahoe-LAFS file store, providing basic list/upload/download/unlink/rename/mkdir
functionality. They can be used as primitives by other scripts. Most of these commands are fairly thin wrappers around
web-API calls, which are described in The Tahoe REST-ful Web API.

By default, all file store manipulation commands look in ~/.tahoe/ to figure out which Tahoe-LAFS node they
should use. When the CLI command makes web-API calls, it will use ~/ .tahoe/node.url for this purpose: a
running Tahoe-LAFS node that provides a web-API port will write its URL into this file. If you want to use a node on
some other host, just create ~/ . tahoe/ and copy that node’s web-API URL into this file, and the CLI commands
will contact that node instead of a local one.

These commands also use a table of “aliases” to figure out which directory they ought to use a starting point. This is
explained in more detail below.

7.4.1 Starting Directories

As described in Tahoe-LAFS Architecture, the Tahoe-LAFS distributed file store consists of a collection of directories
and files, each of which has a “read-cap” or a “write-cap” (also known as a URI). Each directory is simply a table that
maps a name to a child file or directory, and this table is turned into a string and stored in a mutable file. The whole
set of directory and file “nodes” are connected together into a directed graph.

To use this collection of files and directories, you need to choose a starting point: some specific directory that we will
refer to as a “starting directory”. For a given starting directory, the “1s [STARTING_DIR]” command would list
the contents of this directory, the “1s [STARTING_DIR]/dirl” command would look inside this directory for a
child named “dir1” and list its contents, “1s [STARTING_DIR]/dirl/subdir2” would look two levels deep,
etc.

Note that there is no real global “root” directory, but instead each starting directory provides a different, possibly
overlapping perspective on the graph of files and directories.

Each Tahoe-LAFS node remembers a list of starting points, called “aliases”, which are short Unicode strings that stand
in for a directory read- or write- cap. They are stored (encoded as UTF-8) in the file NODEDIR/private/aliases
. If you use the command line “tahoe 1s” without any “[STARTING_DIR]” argument, then it will use the default
alias, which is tahoe:, therefore “tahoe 1s” has the same effect as “tahoe 1s tahoe:”. The same goes for
the other commands that can reasonably use a default alias: get, put, mkdir, mv, and rm.

For backwards compatibility with Tahoe-LAFS v1.0, if the tahoe: alias is not found in ~/ .tahoe/private/
aliases, the CLI will use the contents of ~/.tahoe/private/root_dir.cap instead. Tahoe-LAFS v1.0
had only a single starting point, and stored it in this root_dir.cap file, so v1.1 and later will use it if neces-
sary. However, once you’ve set a tahoe: alias with “tahoe set-alias”, that will override anything in the old
root_dir.cap file.

The Tahoe-LAFS CLI commands use a similar path syntax to scp and rsync —an optional ALIAS : prefix, followed
by the pathname or filename. Some commands (like “tahoe cp”) use the lack of an alias to mean that you want to
refer to a local file, instead of something from the Tahoe-LAFS file store. Another way to indicate this is to start the
pathname with “./”, “~/, “~username/”, or “/”’. On Windows, aliases cannot be a single character, so that it is possible
to distinguish a path relative to an alias from a path starting with a local drive specifier.

When you’re dealing a single starting directory, the tahoe: alias is all you need. But when you want to refer to
something that isn’t yet attached to the graph rooted at that starting directory, you need to refer to it by its capability.
The way to do that is either to use its capability directory as an argument on the command line, or to add an alias to
it, with the “tahoe add-alias” command. Once you’ve added an alias, you can use that alias as an argument to
commands.

The best way to get started with Tahoe-LAFS is to create a node, start it, then use the following command to create a
new directory and set it as your tahoe: alias:

7.4. File Store Manipulation 49

Tahoe-LAFS Documentation, Release 1.x

tahoe create—alias tahoe

After that you can use “tahoe 1ls tahoe:”and “tahoe cp local.txt tahoe:”, and both will refer to the
directory that you’ve just created.

SECURITY NOTE: For users of shared systems

Another way to achieve the same effect as the above “tahoe create-—alias” command is:

tahoe add-alias tahoe "tahoe mkdir"

However, command-line arguments are visible to other users (through the ps command or /proc filesystem, or the
Windows Process Explorer tool), so if you are using a Tahoe-LAFS node on a shared host, your login neighbors will
be able to see (and capture) any directory caps that you set up with the “tahoe add-alias” command.

The “tahoe create-alias” command avoids this problem by creating a new directory and putting the cap into
your aliases file for you. Alternatively, you can edit the NODEDIR/private/aliases file directly, by adding a
line like this:

fun:
—URI:DIR2:0ovijy4yhylglfogg2vcze36dhde:4d4f47gko2xm5g7osgo2yyidibmdmuyo2vijy53g4vijul2ubin

By entering the dircap through the editor, the command-line arguments are bypassed, and other users will not be able
to see them. Once you’ve added the alias, no other secrets are passed through the command line, so this vulnerability
becomes less significant: they can still see your filenames and other arguments you type there, but not the caps that
Tahoe-LAFS uses to permit access to your files and directories.

7.4.2 Command Syntax Summary

tahoe add-alias ALIAS[:] DIRCAP
tahoe create—-alias ALIAS[:]
tahoe list-aliases

tahoe mkdir

tahoe mkdir PATH

tahoe 1ls [PATH]

tahoe webopen [PATH]

tahoe put [——mutable] [FROMLOCAL|-]
tahoe put [—-—-mutable] FROMLOCAL|- TOPATH
tahoe put [FROMLOCAL|-] mutable-file-writecap

tahoe get FROMPATH [TOLOCAL|-]
tahoe cp [-r] FROMPATH TOPATH
tahoe rm PATH

tahoe mv FROMPATH TOPATH
tahoe 1n FROMPATH TOPATH

tahoe backup FROMLOCAL TOPATH

50 Chapter 7. The Tahoe-LAFS CLI commands

fa

Tahoe-LAFS Documentation, Release 1.x

In these summaries, PATH, TOPATH or FROMPATH can be one of:
* [SUBDIRS/]FILENAME for a path relative to the default tahoe: alias;
e ALTAS: [SUBDIRS/]FILENAME for a path relative to another alias;

e DIRCAP/ [SUBDIRS/]FILENAME or DIRCAP: ./ [SUBDIRS/]FILENAME for a path relative to a direc-
tory cap.

See CLI Command Overview above for information on using wildcards with local paths, and different treatment of
colons between Unix and Windows.

FROMLOCAL or TOLOCAL is a path in the local filesystem.

7.4.3 Command Examples

tahoe add-alias ALIAS([:] DIRCAP

An example would be:

tahoe add-alias fun,
—URI:DIR2:0ovjy4yvhylglfoqgg2vcze36dhde:4d4f47gko2xmbg7osgo2yyidibmdmuyo2vijy53gfiviju2ubsmta

This creates an alias fun: and configures it to use the given directory cap. Once this is done, “tahoe
1s fun:” will list the contents of this directory. Use “tahoe add-alias tahoe DIRCAP”to set
the contents of the default tahoe: alias.

Since Tahoe-LAFS v1.8.2, the alias name can be given with or without the trailing colon.

On Windows, the alias should not be a single character, because it would be confused with the drive letter
of a local path.

tahoe create-alias fun

This combines “t ahoe mkdir” and “tahoe add-alias” into a single step.
tahoe list-aliases

This displays a table of all configured aliases.
tahoe mkdir

This creates a new empty unlinked directory, and prints its write-cap to stdout. The new directory is not
attached to anything else.

tahoe mkdir subdir
tahoe mkdir /subdir

This creates a new empty directory and attaches it below the root directory of the default tahoe: alias
with the name “subdizr”.

tahoe 1s
tahoe 1ls /
tahoe 1s tahoe:
tahoe 1s tahoe:/
All four list the root directory of the default tahoe: alias.
tahoe 1ls subdir

This lists a subdirectory of your file store.

7.4. File Store Manipulation 51

Tahoe-LAFS Documentation, Release 1.x

tahoe webopen

tahoe webopen tahoe:

tahoe webopen tahoe:subdir/
tahoe webopen subdir/

This uses the python ‘webbrowser’ module to cause a local web browser to open to the web page for the
given directory. This page offers interfaces to add, download, rename, and unlink files and subdirectories
in that directory. If no alias or path is given, this command opens the root directory of the default tahoe :
alias.

tahoe put file.txt
tahoe put ./file.txt
tahoe put /tmp/file.txt
tahoe put ~/file.txt

These upload the local file into the grid, and prints the new read-cap to stdout. The uploaded file is not
attached to any directory. All one-argument forms of “tahoe put” perform an unlinked upload.

tahoe put -
tahoe put
These also perform an unlinked upload, but the data to be uploaded is taken from stdin.
tahoe put file.txt uploaded.txt
tahoe put file.txt tahoe:uploaded.txt
These upload the local file and add it to your tahoe : root with the name “uploaded.txt”.
tahoe put file.txt subdir/foo.txt
tahoe put - subdir/foo.txt
tahoe put file.txt tahoe:subdir/foo.txt
tahoe put file.txt DIRCAP/foo.txt
tahoe put file.txt DIRCAP/subdir/foo.txt

These upload the named file and attach them to a subdirectory of the given root directory, under the name
“foo.txt”. When a directory write-cap is given, you can use either / (as shown above) or : ./ to
separate it from the following path. When the source file is named “-*, the contents are taken from stdin.

tahoe put file.txt —--mutable

Create a new (SDMF) mutable file, fill it with the contents of £ile.txt, and print the new write-cap to
stdout.

tahoe put file.txt MUTABLE-FILE-WRITECAP

Replace the contents of the given mutable file with the contents of file.txt and print the same write-
cap to stdout.

tahoe cp file.txt tahoe:uploaded.txt
tahoe cp file.txt tahoe:

tahoe cp file.txt tahoe:/

tahoe cp ./file.txt tahoe:

These upload the local file and add it to your tahoe : root with the name “uploaded.txt”.

52 Chapter 7. The Tahoe-LAFS CLI commands

Tahoe-LAFS Documentation, Release 1.x

tahoe cp tahoe:uploaded.txt downloaded.txt
tahoe cp tahoe:uploaded.txt ./downloaded.txt
tahoe cp tahoe:uploaded.txt /tmp/downloaded.txt
tahoe cp tahoe:uploaded.txt ~/downloaded.txt
This downloads the named file from your tahoe : root, and puts the result on your local filesystem.
tahoe cp tahoe:uploaded.txt fun:stuff.txt

This copies a file from your tahoe: root to a different directory, set up earlier with “tahoe
add-alias fun DIRCAP” or “tahoe create-alias fun”.

tahoe cp -r ~/my_dir/ tahoe:

This copies the folder ~/my_dir/ and all its children to the grid, creating the new folder
tahoe:my_dir. Note that the trailing slash is not required: all source arguments which are directories
will be copied into new subdirectories of the target.

The behavior of tahoe cp, like the regular UNIX /bin/cp, is subtly different depending upon the
exact form of the arguments. In particular:

* Trailing slashes indicate directories, but are not required.

« If the target object does not already exist: * and if the source is a single file, it will be copied into the target; *
otherwise, the target will be created as a directory.

* If there are multiple sources, the target must be a directory.
« If the target is a pre-existing file, the source must be a single file.

« If the target is a directory, each source must be a named file, a named directory, or an unnamed directory. It is
not possible to copy an unnamed file (e.g. a raw filecap) into a directory, as there is no way to know what the
new file should be named.

tahoe unlink uploaded.txt
tahoe unlink tahoe:uploaded.txt

This unlinks a file from your tahoe : root (that is, causes there to no longer be an entry uploaded. txt
in the root directory that points to it). Note that this does not delete the file from the grid. For backward
compatibility, tahoe rmis accepted as a synonym for tahoe unlink.

tahoe mv uploaded.txt renamed.txt

tahoe mv tahoe:uploaded.txt tahoe:renamed.txt
These rename a file within your tahoe : root directory.

tahoe mv uploaded.txt fun:

tahoe mv tahoe:uploaded.txt fun:

tahoe mv tahoe:uploaded.txt fun:uploaded.txt

These move a file from your tahoe: root directory to the directory set up earlier with “tahoe
add-alias fun DIRCAP” or “tahoe create-alias fun”.

tahoe backup ~ work:backups

This command performs a versioned backup of every file and directory underneath your “~” home
directory, placing an immutable timestamped snapshot in e.g. work:backups/Archives/
2009-02-06_04:00:052/ (note that the timestamp is in UTC, hence the “Z” suffix), and a link
to the latest snapshot in work:backups/Latest/ . This command uses a small SQLite database known as
the “backupdb”, stored in ~/ . tahoe/private/backupdb.sqglite, to remember which local files

7.4. File Store Manipulation 53

Tahoe-LAFS Documentation, Release 1.x

have been backed up already, and will avoid uploading files that have already been backed up (except
occasionally that will randomly upload them again if it has been awhile since had last been uploaded, just
to make sure that the copy of it on the server is still good). It compares timestamps and filesizes when
making this comparison. It also re-uses existing directories which have identical contents. This lets it run
faster and reduces the number of directories created.

If you reconfigure your client node to switch to a different grid, you should delete the stale backupdb.sqlite
file, to force “tahoe backup” to upload all files to the new grid.

The fact that “tahoe backup” checks timestamps on your local files and skips ones that don’t appear to
have been changed is one of the major differences between “tahoe backup” and “tahoe cp -r”. The other
major difference is that “tahoe backup” keeps links to all of the versions that have been uploaded to the
grid, so you can navigate among old versions stored in the grid. In contrast, “tahoe cp -1’ unlinks the
previous version from the grid directory and links the new version into place, so unless you have a link to
the older version stored somewhere else, you’ll never be able to get back to it.

tahoe backup —--exclude=*x~ ~ work:backups

Same as above, but this time the backup process will ignore any filename that will end with ‘~’.
——exclude will accept any standard Unix shell-style wildcards, as implemented by the Python fn-
match module. You may give multiple ——exclude options. Please pay attention that the pattern will be
matched against any level of the directory tree; it’s still impossible to specify absolute path exclusions.

tahoe backup —-—-exclude-from=/path/to/filename ~ work:backups

——exclude—from is similar to ——exclude, but reads exclusion patterns from /path/to/
filename, one per line.

tahoe backup --exclude-vcs ~ work:backups

This command will ignore any file or directory name known to be used by version control systems to store
metadata. The excluded names are:

* CVS
* RCS
SCCS

L]

o .git

* .gitignore

e .cvsignore

* .svn

e .arch-ids

e {arch}

* =RELEASE-ID
* =meta-update
* =update

e .bzr

* .bzrignore

* .bzrtags

* .hg

 .hgignore

54 Chapter 7. The Tahoe-LAFS CLI commands

http://docs.python.org/library/fnmatch.html
http://docs.python.org/library/fnmatch.html

Tahoe-LAFS Documentation, Release 1.x

e _darcs

7.5 Storage Grid Maintenance

tahoe manifest tahoe:

tahoe manifest --storage-index tahoe:
tahoe manifest --verify-cap tahoe:
tahoe manifest —--repair-cap tahoe:
tahoe manifest —--raw tahoe:

This performs a recursive walk of the given directory, visiting every file and directory that can be reached
from that point. It then emits one line to stdout for each object it encounters.

The default behavior is to print the access cap string (like URI : CHK: .. or URI:DIR2:. .), followed
by a space, followed by the full path name.

If -——storage—-index is added, each line will instead contain the object’s storage index. This (string)
value is useful to determine which share files (on the server) are associated with this directory tree. The
-—verify-cap and —-repair—cap options are similar, but emit a verify-cap and repair-cap, respec-
tively. If ——raw is provided instead, the output will be a JSON-encoded dictionary that includes keys
for pathnames, storage index strings, and cap strings. The last line of the ——raw output will be a JSON
encoded deep-stats dictionary.

tahoe stats tahoe:

This performs a recursive walk of the given directory, visiting every file and directory that can be reached
from that point. It gathers statistics on the sizes of the objects it encounters, and prints a summary to
stdout.

7.6 Debugging

For a list of all debugging commands, use “tahoe debug”. For more detailed help on any of these commands, use
“tahoe debug COMMAND --help”.

“tahoe debug find-shares STORAGEINDEX NODEDIRS..” will look through one or more storage nodes
for the share files that are providing storage for the given storage index.

“tahoe debug catalog-shares NODEDIRS..” will look through one or more storage nodes and locate ev-
ery single share they contain. It produces a report on stdout with one line per share, describing what kind of share it
is, the storage index, the size of the file is used for, etc. It may be useful to concatenate these reports from all storage
hosts and use it to look for anomalies.

“tahoe debug dump-share SHAREFILE” will take the name of a single share file (as found by “tahoe
find-shares”) and print a summary of its contents to stdout. This includes a list of leases, summaries of the
hash tree, and information from the UEB (URI Extension Block). For mutable file shares, it will describe which
version (seqnum and root-hash) is being stored in this share.

“tahoe debug dump-cap CAP” will take any Tahoe-LAFS URI and unpack it into separate pieces. The most
useful aspect of this command is to reveal the storage index for any given URI. This can be used to locate the share
files that are holding the encoded+encrypted data for this file.

“tahoe debug corrupt-share SHAREFILE” will flip a bit in the given sharefile. This can be used to test the
client-side verification/repair code. Obviously, this command should not be used during normal operation.

7.5. Storage Grid Maintenance 55

Tahoe-LAFS Documentation, Release 1.x

56 Chapter 7. The Tahoe-LAFS CLI commands

CHAPTER
EIGHT

THE TAHOE REST-FUL WEB API

1. Enabling the web-API port

2. Basic Concepts: GET, PUT, DELETE, POST
3. URLs

1.

Child Lookup

Slow Operations, Progress, and Cancelling

5. Programmatic Operations

1.

[©) Y B VS N]

Reading a file

. Writing/Uploading a File

. Creating a New Directory

. Getting Information About a File Or Directory (as JSON)

. Attaching an Existing File or Directory by its read- or write-cap

. Adding Multiple Files or Directories to a Parent Directory at Once

. Unlinking a File or Directory

6. Browser Operations: Human-Oriented Interfaces

1.

O 00 N N W B~ W

—_
=)

Viewing a Directory (as HTML)

. Viewing/Downloading a File

. Getting Information About a File Or Directory (as HTML)
. Creating a Directory

. Uploading a File

. Attaching an Existing File Or Directory (by URI)

. Unlinking a Child

. Renaming a Child

. Relinking (“Moving”) a Child

. Other Utilities

11.

Debugging and Testing Features

7. Other Useful Pages

8. Static Files in /public_html

57

Tahoe-LAFS Documentation, Release 1.x

9. Safety and Security Issues — Names vs. URIs
10. Concurrency Issues

11. Access Blacklist

8.1 Enabling the web-API port

Every Tahoe node is capable of running a built-in HTTP server. To enable this, just write a port number into the
“[node]web.port” line of your node’s tahoe.cfg file. For example, writing “web.port = 3456” into the “[node]” section
of SNODEDIR/tahoe.cfg will cause the node to run a webserver on port 3456.

This string is actually a Twisted “strports” specification, meaning you can get more control over the inter-
face to which the server binds by supplying additional arguments. For more details, see the documentation on
twisted.application.strports.

Writing “tcp:3456:interface=127.0.0.1” into the web.port line does the same but binds to the loopback interface, ensur-
ing that only the programs on the local host can connect. Using “ssl:3456:privateKey=mykey.pem:certKey=cert.pem”
runs an SSL server.

This webport can be set when the node is created by passing a —webport option to the ‘tahoe create-node’ command.
By default, the node listens on port 3456, on the loopback (127.0.0.1) interface.

8.2 Basic Concepts: GET, PUT, DELETE, POST

As described in Tahoe-LAFS Architecture, each file and directory in a Tahoe-LAFS file store is referenced by an
identifier that combines the designation of the object with the authority to do something with it (such as read or
modify the contents). This identifier is called a “read-cap” or “write-cap”, depending upon whether it enables read-
only or read-write access. These “caps” are also referred to as URIs (which may be confusing because they are not
currently RFC3986-compliant URIs).

The Tahoe web-based API is “REST-ful”, meaning it implements the concepts of “REpresentational State Transfer’:
the original scheme by which the World Wide Web was intended to work. Each object (file or directory) is referenced
by a URL that includes the read- or write- cap. HTTP methods (GET, PUT, and DELETE) are used to manipulate
these objects. You can think of the URL as a noun, and the method as a verb.

In REST, the GET method is used to retrieve information about an object, or to retrieve some representation of the
object itself. When the object is a file, the basic GET method will simply return the contents of that file. Other
variations (generally implemented by adding query parameters to the URL) will return information about the object,
such as metadata. GET operations are required to have no side-effects.

PUT is used to upload new objects into the file store, or to replace an existing link or the contents of a mutable
file. DELETE is used to unlink objects from directories. Both PUT and DELETE are required to be idempotent:
performing the same operation multiple times must have the same side-effects as only performing it once.

POST is used for more complicated actions that cannot be expressed as a GET, PUT, or DELETE. POST operations
can be thought of as a method call: sending some message to the object referenced by the URL. In Tahoe, POST is
also used for operations that must be triggered by an HTML form (including upload and unlinking), because otherwise
a regular web browser has no way to accomplish these tasks. In general, everything that can be done with a PUT or
DELETE can also be done with a POST.

Tahoe-LAFS’ web API is designed for two different kinds of consumer. The first is a program that needs to manipulate
the file store. Such programs are expected to use the RESTful interface described above. The second is a human using
a standard web browser to work with the file store. This user is presented with a series of HTML pages with links to
download files, and forms that use POST actions to upload, rename, and unlink files.

58 Chapter 8. The Tahoe REST-ful Web API

https://twistedmatrix.com/documents/current/api/twisted.application.strports.html
tcp:3456:interface=127.0.0.1
https://tools.ietf.org/html/rfc3986

Tahoe-LAFS Documentation, Release 1.x

When an error occurs, the HTTP response code will be set to an appropriate 400-series code (like 404 Not Found for
an unknown childname, or 400 Bad Request when the parameters to a web-API operation are invalid), and the HTTP
response body will usually contain a few lines of explanation as to the cause of the error and possible responses.
Unusual exceptions may result in a 500 Internal Server Error as a catch-all, with a default response body containing
a Nevow-generated HTML-ized representation of the Python exception stack trace that caused the problem. CLI
programs which want to copy the response body to stderr should provide an “Accept: text/plain” header to their
requests to get a plain text stack trace instead. If the Accept header contains =/ *, or text / *, or text/html (or if there
is no Accept header), HTML tracebacks will be generated.

8.3 URLs

Tahoe uses a variety of read- and write- caps to identify files and directories. The most common of these is the
“immutable file read-cap”, which is used for most uploaded files. These read-caps look like the following:

’URI:CHK:ime6pvkaxuetdfah2p2f35pe54:4bt254xk3tew6nd4y20jpxj4m6wxjqqlwnztgre6gnjgtucd5r4a{3:10:202

The next most common is a “directory write-cap”, which provides both read and write access to a directory, and look
like this:

’URI:DIRZ:djrdkfawoqihigoett4g6auz6a:jx5mplfpwexnoqff7y5e4zjus4lidm76dcuarpct7cckorh2dpg%

There are also “directory read-caps”, which start with “URI:DIR2-RO:”, and give read-only access to a directory.
Finally there are also mutable file read- and write- caps, which start with “URI:SSK”, and give access to mutable files.

(Later versions of Tahoe will make these strings shorter, and will remove the unfortunate colons, which must be
escaped when these caps are embedded in URLSs.)

To refer to any Tahoe object through the web API, you simply need to combine a prefix (which indicates the HTTP
server to use) with the cap (which indicates which object inside that server to access). Since the default Tahoe webport
is 3456, the most common prefix is one that will use a local node listening on this port:

http://127.0.0.1:3456/uri/ + S$CAP

So, to access the directory named above, the URL would be:

http://127.0.0.1:3456/uri/URI%$3ADIR2%3Adjrdkfawogihigoett4gbauzéa
—%3Ajx5mplfpwexnoqffiySedzjusd4lidm76dcuarpct7cckorh2dpgqg/

(note that the colons in the directory-cap are url-encoded into “%3A” sequences).

Likewise, to access the file named above, use:

http://127.0.0.1:3456/uri/URI%3ACHKS3Aime6pvkaxuetdfah2p2f35peb4
—%3A4btz54xk3tewond4dy20jpxjdmowx jgglwnztgrebgnjgtucd5r4as3A3%3A10%3A202

In the rest of this document, we’ll use “$DIRCAP” as shorthand for a read-cap or write-cap that refers to a directory,
and “$FILECAP” to abbreviate a cap that refers to a file (whether mutable or immutable). So those URLs above can
be abbreviated as:

http://127.0.0.1:3456/uri/$DIRCAP/
http://127.0.0.1:3456/uri/$SFILECAP

The operation summaries below will abbreviate these further, by eliding the server prefix. They will be displayed like
this:

8.3. URLs 59

Tahoe-LAFS Documentation, Release 1.x

/uri/S$DIRCAP/
/uri/SFILECAP

/cap can be used as a synonym for /uri. If interoperability with older web-API servers is required, /uri should be used.

8.3.1 Child Lookup

Tahoe directories contain named child entries, just like directories in a regular local filesystem. These child entries,
called “dirnodes”, consist of a name, metadata, a write slot, and a read slot. The write and read slots normally contain
a write-cap and read-cap referring to the same object, which can be either a file or a subdirectory. The write slot may
be empty (actually, both may be empty, but that is unusual).

If you have a Tahoe URL that refers to a directory, and want to reference a named child inside it, just append the child
name to the URL. For example, if our sample directory contains a file named “welcome.txt”, we can refer to that file
with:

http://127.0.0.1:3456/uri/$DIRCAP/welcome.txt

(or http://127.0.0.1:3456/uri/URI%3 ADIR2%3 Adjrdkfawoqihigoett4gbauz6a%3 Ajx Smplfpwexnoqff7ySe4zjus4lidm76dcuarpct7cckorl

welcome.txt)

Multiple levels of subdirectories can be handled this way:

’http://127.0.0.l:3456/uri/$DIRCAP/tahoe—source/docs/architecture.rst

In this document, when we need to refer to a URL that references a file using this child-of-some-directory format,
we’ll use the following string:

’/uri/$DIRCAP/[SUBDIRS../]FILENAME

The “[SUBDIRS../]” part means that there are zero or more (optional) subdirectory names in the middle of the URL.
The “FILENAME” at the end means that this whole URL refers to a file of some sort, rather than to a directory.

When we need to refer specifically to a directory in this way, we’ll write:

’/uri/$DIRCAP/[SUBDIRS../]SUBDIR

Note that all components of pathnames in URLs are required to be UTF-8 encoded, so “resume.doc” (with an acute
accent on both E’s) would be accessed with:

’http://127.0.0.l:3456/uri/$DIRCAP/r%C3%A9sum%C3%A9.doc

Also note that the filenames inside upload POST forms are interpreted using whatever character set was provided in
the conventional ‘_charset’ field, and defaults to UTF-8 if not otherwise specified. The JSON representation of each
directory contains native Unicode strings. Tahoe directories are specified to contain Unicode filenames, and cannot
contain binary strings that are not representable as such.

All Tahoe operations that refer to existing files or directories must include a suitable read- or write- cap in the URL: the
web-API server won’t add one for you. If you don’t know the cap, you can’t access the file. This allows the security
properties of Tahoe caps to be extended across the web-API interface.

60 Chapter 8. The Tahoe REST-ful Web API

http://127.0.0.1:3456/uri/URI%3ADIR2%3Adjrdkfawoqihigoett4g6auz6a%3Ajx5mplfpwexnoqff7y5e4zjus4lidm76dcuarpct7cckorh2dpgq/welcome.txt
http://127.0.0.1:3456/uri/URI%3ADIR2%3Adjrdkfawoqihigoett4g6auz6a%3Ajx5mplfpwexnoqff7y5e4zjus4lidm76dcuarpct7cckorh2dpgq/welcome.txt

Tahoe-LAFS Documentation, Release 1.x

8.4 Slow Operations, Progress, and Cancelling

Certain operations can be expected to take a long time. The “t=deep-check”, described below, will recursively visit
every file and directory reachable from a given starting point, which can take minutes or even hours for extremely
large directory structures. A single long-running HTTP request is a fragile thing: proxies, NAT boxes, browsers, and
users may all grow impatient with waiting and give up on the connection.

For this reason, long-running operations have an “operation handle”, which can be used to poll for status/progress
messages while the operation proceeds. This handle can also be used to cancel the operation. These handles are
created by the client, and passed in as a an “ophandle=" query argument to the POST or PUT request which starts the
operation. The following operations can then be used to retrieve status:

GET /operations/$HANDLE?output=HTML (with or without t=status)
GET /operations/$HANDLE?output=JSON (same)

These two retrieve the current status of the given operation. Each operation presents a different sort of
information, but in general the page retrieved will indicate:

* whether the operation is complete, or if it is still running
* how much of the operation is complete, and how much is left, if possible

Note that the final status output can be quite large: a deep-manifest of a directory structure with 300k
directories and 200k unique files is about 275MB of JSON, and might take two minutes to generate. For
this reason, the full status is not provided until the operation has completed.

The HTML form will include a meta-refresh tag, which will cause a regular web browser to reload the
status page about 60 seconds later. This tag will be removed once the operation has completed.

There may be more status information available under /operations/SHANDLE/$ETC : i.e., the handle
forms the root of a URL space.

POST /operations/S$SHANDLE?t=cancel

This terminates the operation, and returns an HTML page explaining what was cancelled. If the operation
handle has already expired (see below), this POST will return a 404, which indicates that the operation is
no longer running (either it was completed or terminated). The response body will be the same as a GET
/operations/SHANDLE on this operation handle, and the handle will be expired immediately afterwards.

The operation handle will eventually expire, to avoid consuming an unbounded amount of memory. The handle’s
time-to-live can be reset at any time, by passing a retain-for= argument (with a count of seconds) to either the initial
POST that starts the operation, or the subsequent GET request which asks about the operation. For example, if a
‘GET /operations/$SHANDLE ?output=JSON&retain-for=600" query is performed, the handle will remain active for
600 seconds (10 minutes) after the GET was received.

In addition, if the GET includes a release-after-complete=True argument, and the operation has completed, the opera-
tion handle will be released immediately.

If a retain-for= argument is not used, the default handle lifetimes are:
¢ handles will remain valid at least until their operation finishes

* uncollected handles for finished operations (i.e. handles for operations that have finished but for which the GET
page has not been accessed since completion) will remain valid for four days, or for the total time consumed by
the operation, whichever is greater.

¢ collected handles (i.e. the GET page has been retrieved at least once since the operation completed) will remain
valid for one day.

Many “slow” operations can begin to use unacceptable amounts of memory when operating on large directory struc-
tures. The memory usage increases when the ophandle is polled, as the results must be copied into a JSON string, sent

8.4. Slow Operations, Progress, and Cancelling 61

Tahoe-LAFS Documentation, Release 1.x

over the wire, then parsed by a client. So, as an alternative, many “slow” operations have streaming equivalents. These
equivalents do not use operation handles. Instead, they emit line-oriented status results immediately. Client code can

cancel the operation by simply closing the HTTP connection.

8.5 Programmatic Operations

Now that we know how to build URLs that refer to files and directories in a Tahoe-LAFS file store, what sorts of
operations can we do with those URLs? This section contains a catalog of GET, PUT, DELETE, and POST operations
that can be performed on these URLs. This set of operations are aimed at programs that use HTTP to communicate

with a Tahoe node. A later section describes operations that are intended for web browsers.

8.5.1 Reading a File

GET /uri/S$SFILECAP

GET /uri/$DIRCAP/[SUBDIRS../]FILENAME

This will retrieve the contents of the given file. The HTTP response body will contain the sequence of
bytes that make up the file.

The “Range:” header can be used to restrict which portions of the file are returned (see RFC 2616 sec-
tion 14.35.1 “Byte Ranges”), however Tahoe only supports a single “bytes” range and never provides a
multipart/byteranges response. An attempt to begin a read past the end of the file will provoke
a 416 Requested Range Not Satisfiable error, but normal overruns (reads which start at the beginning or
middle and go beyond the end) are simply truncated.

To view files in a web browser, you may want more control over the Content-Type and Content-
Disposition headers. Please see the next section “Browser Operations”, for details on how to modify
these URLs for that purpose.

8.5.2 Writing/Uploading a File

PUT /uri/SFILECAP

PUT /uri/$DIRCAP/[SUBDIRS../]FILENAME

Upload a file, using the data from the HTTP request body, and add whatever child links and subdirectories
are necessary to make the file available at the given location. Once this operation succeeds, a GET on
the same URL will retrieve the same contents that were just uploaded. This will create any necessary
intermediate subdirectories.

To use the /uri/$SFILECAP form, $FILECAP must be a write-cap for a mutable file.

In the /uri/$DIRCAP/[SUBDIRS../]JFILENAME form, if the target file is a writeable mutable file, that
file’s contents will be overwritten in-place. If it is a read-cap for a mutable file, an error will occur. If it is
an immutable file, the old file will be discarded, and a new one will be put in its place. If the target file is
a writable mutable file, you may also specify an “offset” parameter — a byte offset that determines where
in the mutable file the data from the HTTP request body is placed. This operation is relatively efficient
for MDMF mutable files, and is relatively inefficient (but still supported) for SDMF mutable files. If no
offset parameter is specified, then the entire file is replaced with the data from the HTTP request body.
For an immutable file, the “offset” parameter is not valid.

When creating a new file, you can control the type of file created by specifying a format= argument in the
query string. format=MDMF creates an MDMF mutable file. format=SDMF creates an SDMF mutable

62

Chapter 8. The Tahoe REST-ful Web API

Tahoe-LAFS Documentation, Release 1.x

PUT

file. format=CHK creates an immutable file. The value of the format argument is case-insensitive. If no
format is specified, the newly-created file will be immutable (but see below).

For compatibility with previous versions of Tahoe-LAFS, the web-API will also accept a mutable=true
argument in the query string. If mutable=true is given, then the new file will be mutable, and its format
will be the default mutable file format, as configured by the [client]mutable.format option of tahoe.cfg on
the Tahoe-LAFS node hosting the webapi server. Use of mutable=true is discouraged; new code should
use format= instead of mutable=true (unless it needs to be compatible with web-API servers older than
v1.9.0). If neither format= nor mutable=true are given, the newly-created file will be immutable.

This returns the file-cap of the resulting file. If a new file was created by this method, the HTTP response
code (as dictated by rfc2616) will be set to 201 CREATED. If an existing file was replaced or modified,
the response code will be 200 OK.

Note that the ‘curl -T localfile http://127.0.0.1:3456/uri/\protect\T [\textdollarDIRCAP/foo.txt” command
can be used to invoke this operation.

/uri

This uploads a file, and produces a file-cap for the contents, but does not attach the file into the file
store. No directories will be modified by this operation. The file-cap is returned as the body of the HTTP
response.

This method accepts format= and mutable=true as query string arguments, and interprets those arguments
in the same way as the linked forms of PUT described immediately above.

8.5.3 Creating a New Directory

POST /uri?t=mkdir

PUT

/uri?t=mkdir

Create a new empty directory and return its write-cap as the HTTP response body. This does not make
the newly created directory visible from the file store. The “PUT” operation is provided for backwards
compatibility: new code should use POST.

This supports a format= argument in the query string. The format= argument, if specified, controls the
format of the directory. format=MDMF indicates that the directory should be stored as an MDMF file;
format=SDMF indicates that the directory should be stored as an SDMF file. The value of the format=
argument is case-insensitive. If no format= argument is given, the directory’s format is determined by the
default mutable file format, as configured on the Tahoe-LAFS node responding to the request.

POST /uri?t=mkdir-with-children

Create a new directory, populated with a set of child nodes, and return its write-cap as the HTTP response
body. The new directory is not attached to any other directory: the returned write-cap is the only reference
to it.

The format of the directory can be controlled with the format= argument in the query string, as described
above.

Initial children are provided as the body of the POST form (this is more efficient than doing separate mkdir
and set_children operations). If the body is empty, the new directory will be empty. If not empty, the body
will be interpreted as a UTF-8 JSON-encoded dictionary of children with which the new directory should
be populated, using the same format as would be returned in the ‘children’ value of the t=json GET
request, described below. Each dictionary key should be a child name, and each value should be a list of
[TYPE, PROPDICT], where PROPDICT contains “rw_uri”, “ro_uri”, and “metadata” keys (all others are
ignored). For example, the PUT request body could be:

8.5. Programmatic Operations

63

http://127.0.0.1:3456/uri/\protect \T1\textdollar DIRCAP/foo.txt

Tahoe-LAFS Documentation, Release 1.x

"Fran\uOOe7ais": ["filenode", {
"ro_uri": "URI:CHK:...",
"metadata": {
"ctime": 1202777696.7564139,
"mtime": 1202777696.7564139,
"tahoe": {
"linkcrtime": 1202777696.7564139,
"linkmotime": 1202777696.7564139
Py oy o1,

"subdir": ["dirnode", {
"rw_uri": "URI:DIR2:...",
"ro_uri": "URI:DIR2-RO:...",
"metadata": {

"ctime": 1202778102.7589991,
"mtime": 1202778111.2160511,
"tahoe": {
"linkcrtime": 1202777696.7564139,
"linkmotime": 1202777696.7564139
Py obod

For forward-compatibility, a mutable directory can also contain caps in a format that is unknown to the
web-API server. When such caps are retrieved from a mutable directory in a “ro_uri” field, they will be
prefixed with the string “ro.”, indicating that they must not be decoded without checking that they are
read-only. The “ro.” prefix must not be stripped off without performing this check. (Future versions of
the web-API server will perform it where necessary.)

If both the “rw_uri” and “ro_uri” fields are present in a given PROPDICT, and the web-API server recog-
nizes the rw_uri as a write cap, then it will reset the ro_uri to the corresponding read cap and discard the
original contents of ro_uri (in order to ensure that the two caps correspond to the same object and that the
ro_uri is in fact read-only). However this may not happen for caps in a format unknown to the web-API
server. Therefore, when writing a directory the web-API client should ensure that the contents of “rw_uri”
and “ro_uri” for a given PROPDICT are a consistent (write cap, read cap) pair if possible. If the web-API
client only has one cap and does not know whether it is a write cap or read cap, then it is acceptable to set
“rw_uri” to that cap and omit “ro_uri”. The client must not put a write cap into a “ro_uri” field.

The metadata may have a “no-write” field. If this is set to true in the metadata of a link, it will not be
possible to open that link for writing via the SFTP frontend; see Tahoe-LAFS SFTP Frontend for details.
Also, if the “no-write” field is set to true in the metadata of a link to a mutable child, it will cause the link
to be diminished to read-only.

Note that the web-API-using client application must not provide the “Content-Type: multipart/form-data”
header that usually accompanies HTML form submissions, since the body is not formatted this way.
Doing so will cause a server error as the lower-level code misparses the request body.

Child file names should each be expressed as a Unicode string, then used as keys of the dictionary. The
dictionary should then be converted into JSON, and the resulting string encoded into UTF-8. This UTF-8
bytestring should then be used as the POST body.

POST /uri?t=mkdir-immutable

Like t=mkdir-with-children above, but the new directory will be deep-immutable. This means that the
directory itself is immutable, and that it can only contain objects that are treated as being deep-immutable,
like immutable files, literal files, and deep-immutable directories.

For forward-compatibility, a deep-immutable directory can also contain caps in a format that is unknown
to the web-API server. When such caps are retrieved from a deep-immutable directory in a “ro_uri” field,
they will be prefixed with the string “imm.”, indicating that they must not be decoded without checking

64 Chapter 8. The Tahoe REST-ful Web API

Tahoe-LAFS Documentation, Release 1.x

that they are immutable. The “imm.” prefix must not be stripped off without performing this check.
(Future versions of the web-API server will perform it where necessary.)

The cap for each child may be given either in the “rw_uri” or “ro_uri” field of the PROPDICT (not both).
If a cap is given in the “rw_uri” field, then the web-API server will check that it is an immutable read-cap
of a known format, and give an error if it is not. If a cap is given in the “ro_uri” field, then the web-API
server will still check whether known caps are immutable, but for unknown caps it will simply assume
that the cap can be stored, as described above. Note that an attacker would be able to store any cap in
an immutable directory, so this check when creating the directory is only to help non-malicious clients to
avoid accidentally giving away more authority than intended.

A non-empty request body is mandatory, since after the directory is created, it will not be possible to add
more children to it.

POST /uri/$DIRCAP/[SUBDIRS../]SUBDIR?t=mkdir
PUT /uri/$DIRCAP/[SUBDIRS../]SUBDIR?t=mkdir

Create new directories as necessary to make sure that the named target (SDIRCAP/SUBDIRS../SUBDIR)
is a directory. This will create additional intermediate mutable directories as necessary. If the named
target directory already exists, this will make no changes to it.

If the final directory is created, it will be empty.

This accepts a format= argument in the query string, which controls the format of the named target direc-
tory, if it does not already exist. format= is interpreted in the same way as in the POST /uri?t=mkdir form.
Note that format= only controls the format of the named target directory; intermediate directories, if cre-
ated, are created based on the default mutable type, as configured on the Tahoe-LAFS server responding
to the request.

This operation will return an error if a blocking file is present at any of the parent names, preventing
the server from creating the necessary parent directory; or if it would require changing an immutable
directory.

The write-cap of the new directory will be returned as the HTTP response body.
POST /uri/$DIRCAP/[SUBDIRS../]SUBDIR?t=mkdir-with-children

Like /uri?t=mkdir-with-children, but the final directory is created as a child of an existing mutable direc-
tory. This will create additional intermediate mutable directories as necessary. If the final directory is
created, it will be populated with initial children from the POST request body, as described above.

This accepts a format= argument in the query string, which controls the format of the target directory,
if the target directory is created as part of the operation. format= is interpreted in the same way as in
the POST/ uri?t=mkdir-with-children operation. Note that format= only controls the format of the named
target directory; intermediate directories, if created, are created using the default mutable type setting, as
configured on the Tahoe-LAFS server responding to the request.

This operation will return an error if a blocking file is present at any of the parent names, preventing
the server from creating the necessary parent directory; or if it would require changing an immutable
directory; or if the immediate parent directory already has a a child named SUBDIR.

POST /uri/$DIRCAP/[SUBDIRS../]SUBDIR?t=mkdir-immutable

Like /uri?t=mkdir-immutable, but the final directory is created as a child of an existing mutable directory.
The final directory will be deep-immutable, and will be populated with the children specified as a JSON
dictionary in the POST request body.

In Tahoe 1.6 this operation creates intermediate mutable directories if necessary, but that behaviour should
not be relied on; see ticket #920.

8.5. Programmatic Operations 65

Tahoe-LAFS Documentation, Release 1.x

This operation will return an error if the parent directory is immutable, or already has a child named
SUBDIR.

POST /uri/SDIRCAP/[SUBDIRS../]?t=mkdir&name=NAME

Create a new empty mutable directory and attach it to the given existing directory. This will create
additional intermediate directories as necessary.

This accepts a format= argument in the query string, which controls the format of the named target direc-
tory, if it does not already exist. format= is interpreted in the same way as in the POST /uri?t=mkdir form.
Note that format= only controls the format of the named target directory; intermediate directories, if cre-
ated, are created based on the default mutable type, as configured on the Tahoe-LAFS server responding
to the request.

This operation will return an error if a blocking file is present at any of the parent names, preventing
the server from creating the necessary parent directory, or if it would require changing any immutable
directory.

The URL of this operation points to the parent of the bottommost new directory, whereas the
/uri/$DIRCAP/[SUBDIRS../][SUBDIR ?t=mkdir operation above has a URL that points directly to the
bottommost new directory.

POST /uri/S$DIRCAP/[SUBDIRS../]?t=mkdir-with-children&name=NAME

Like /uri/$DIRCAP/[SUBDIRS../]?t=mkdir&name=NAME, but the new directory will be populated with
initial children via the POST request body. This command will create additional intermediate mutable
directories as necessary.

This accepts a format= argument in the query string, which controls the format of the target directory,
if the target directory is created as part of the operation. format= is interpreted in the same way as in
the POST/ uri?t=mkdir-with-children operation. Note that format= only controls the format of the named
target directory; intermediate directories, if created, are created using the default mutable type setting, as
configured on the Tahoe-LAFS server responding to the request.

This operation will return an error if a blocking file is present at any of the parent names, preventing
the server from creating the necessary parent directory; or if it would require changing an immutable
directory; or if the immediate parent directory already has a a child named NAME.

Note that the name= argument must be passed as a queryarg, because the POST request body is used for
the initial children JSON.

POST /uri/S$DIRCAP/[SUBDIRS../]?t=mkdir-immutable&name=NAME

Like /uri/$DIRCAP/[SUBDIRS../]?t=mkdir-with-children&name=NAME, but the final directory will be
deep-immutable. The children are specified as a JSON dictionary in the POST request body. Again, the
name= argument must be passed as a queryarg.

In Tahoe 1.6 this operation creates intermediate mutable directories if necessary, but that behaviour should
not be relied on; see ticket #920.

This operation will return an error if the parent directory is immutable, or already has a child named
NAME.

66 Chapter 8. The Tahoe REST-ful Web API

Tahoe-LAFS Documentation, Release 1.x

8.5.4 Getting Information About a File Or Directory (as JSON)

GET /uri/S$SFILECAP?t=json

GET /uri/S$DIRCAP?t=7json

GET /uri/$DIRCAP/[SUBDIRS../]SUBDIR?t=7json
GET /uri/S$DIRCAP/[SUBDIRS../]FILENAME?t=]json

This returns a machine-parseable JSON-encoded description of the given object. The JSON always con-
tains a list, and the first element of the list is always a flag that indicates whether the referenced object is
a file or a directory. If it is a capability to a file, then the information includes file size and URI, like this:

GET /uri/S$FILECAP?t=json

["filenode", {
"ro_uri": file_uri,
"verify_uri": verify_uri,
"size": bytes,
"mutable": false,
"format": "CHK"
bl

If it is a capability to a directory followed by a path from that directory to a file, then the information also
includes metadata from the link to the file in the parent directory, like this:

GET /uri/$DIRCAP/[SUBDIRS../]FILENAME?t=json

["filenode", {

"ro_uri": file_uri,

"verify_uri": verify_uri,

"size": bytes,

"mutable": false,

"format": "CHK",

"metadata": {

"ctime": 1202777696.7564139,
"mtime": 1202777696.7564139,
"tahoe": {
"linkcrtime": 1202777696.7564139,
"linkmotime": 1202777696.7564139
Pyl

If it is a directory, then it includes information about the children of this directory, as a mapping from child
name to a set of data about the child (the same data that would appear in a corresponding GET?t=json
of the child itself). The child entries also include metadata about each child, including link-creation- and
link-change- timestamps. The output looks like this:

GET /uri/$DIRCAP?t=json
GET /uri/SDIRCAP/[SUBDIRS../]SUBDIR?t=json

["dirnode", {

"rw_uri": read_write_uri,
"ro_uri": read_only_uri,
"verify_uri": verify_uri,
"mutable": true,
"format": "SDMEF",

"children": {
"foo.txt": ["filenode",

(continues on next page)

8.5. Programmatic Operations 67

Tahoe-LAFS Documentation, Release 1.x

(continued from previous page)

"ro_uri": uri,
"size": bytes,
"metadata": {
"ctime": 1202777696.7564139,
"mtime": 1202777696.7564139,
"tahoe": {
"linkcrtime": 1202777696.7564139,
"linkmotime": 1202777696.7564139
| S

"subdir": ["dirnode",
{
"rw_uri": rwuri,
"ro_uri": rouri,
"metadata": {

"ctime": 1202778102.7589991,
"mtime": 1202778111.2160511,
"tahoe": {
"linkcrtime": 1202777696.7564139,
"linkmotime": 1202777696.7564139
Py oyl

In the above example, note how ‘children’ is a dictionary in which the keys are child names and the
values depend upon whether the child is a file or a directory. The value is mostly the same as the JSON
representation of the child object (except that directories do not recurse — the “children” entry of the child
is omitted, and the directory view includes the metadata that is stored on the directory edge).

The rw_uri field will be present in the information about a directory if and only if you have read-write
access to that directory. The verify_uri field will be present if and only if the object has a verify-cap
(non-distributed LIT files do not have verify-caps).

If the cap is of an unknown format, then the file size and verify_uri will not be available:

GET /uri/S$UNKNOWNCAP?t=json
["unknown", {
"ro_uri": unknown_read_uri
bl

GET /uri/$DIRCAP/[SUBDIRS../]UNKNOWNCHILDNAME?t=json

["unknown", {

"rw_uri": unknown_write_uri,
"ro_uri": unknown_read_uri,
"mutable": true,

"metadata": {

"ctime": 1202777696.7564139,
"mtime": 1202777696.7564139,
"tahoe": {
"linkcrtime": 1202777696.7564139,
"linkmotime": 1202777696.7564139
Py oyl

As in the case of file nodes, the metadata will only be present when the capability is to a directory followed
by a path. The “mutable” field is also not always present; when it is absent, the mutability of the object is
not known.

68

Chapter 8. The Tahoe REST-ful Web API

Tahoe-LAFS Documentation, Release 1.x

About the metadata

The value of the ‘tahoe’:’linkmotime’ key is updated whenever a link to a child is set. The value of the
‘tahoe’:’linkcrtime’ key is updated whenever a link to a child is created — i.e. when there was not previously a
link under that name.

Note however, that if the edge in the Tahoe-LAFS file store points to a mutable file and the contents of that mutable file
is changed, then the ‘tahoe’:’linkmotime’ value on that edge will not be updated, since the edge itself wasn’t updated
— only the mutable file was.

The timestamps are represented as a number of seconds since the UNIX epoch (1970-01-01 00:00:00 UTC), with leap
seconds not being counted in the long term.

In Tahoe earlier than v1.4.0, ‘mtime’ and ‘ctime’ keys were populated instead of the ‘tahoe’:’linkmotime’ and
‘tahoe’’linkcrtime’ keys. Starting in Tahoe v1.4.0, the ‘linkmotime’/’linkcrtime’ keys in the ‘tahoe’ sub-dict are
populated. However, prior to Tahoe v1.7beta, a bug caused the ‘tahoe’ sub-dict to be deleted by web-API requests in
which new metadata is specified, and not to be added to existing child links that lack it.

From Tahoe v1.7.0 onward, the ‘mtime’ and ‘ctime’ fields are no longer populated or updated (see ticket #924),
except by “tahoe backup” as explained below. For backward compatibility, when an existing link is updated and
‘tahoe’:’linkcrtime’ is not present in the previous metadata but ‘ctime’ is, the old value of ‘ctime’ is used as the new
value of ‘tahoe’:’linkcrtime’.

The reason we added the new fields in Tahoe v1.4.0 is that there is a “set_children” API (described below) which you
can use to overwrite the values of the ‘mtime’/’ctime’ pair, and this API is used by the “tahoe backup” command (in
Tahoe v1.3.0 and later) to set the ‘mtime’ and ‘ctime’ values when backing up files from a local filesystem into the
Tahoe-LAFS file store. As of Tahoe v1.4.0, the set_children API cannot be used to set anything under the ‘tahoe’ key
of the metadata dict — if you include ‘tahoe’ keys in your ‘metadata’ arguments then it will silently ignore those keys.

Therefore, if the ‘tahoe’ sub-dict is present, you can rely on the ‘linkcrtime’ and ‘linkmotime’ values therein to have
the semantics described above. (This is assuming that only official Tahoe clients have been used to write those links,
and that their system clocks were set to what you expected — there is nothing preventing someone from editing their
Tahoe client or writing their own Tahoe client which would overwrite those values however they like, and there is
nothing to constrain their system clock from taking any value.)

When an edge is created or updated by “tahoe backup”, the ‘mtime’ and ‘ctime’ keys on that edge are set as follows:

* ‘mtime’ is set to the timestamp read from the local filesystem for the “mtime” of the local file in question, which
means the last time the contents of that file were changed.

¢ On Windows, ‘ctime’ is set to the creation timestamp for the file read from the local filesystem. On other
platforms, ‘ctime’ is set to the UNIX “ctime” of the local file, which means the last time that either the contents
or the metadata of the local file was changed.

There are several ways that the ‘ctime’ field could be confusing:

1. You might be confused about whether it reflects the time of the creation of a link in the Tahoe-LAFS file store
(by a version of Tahoe < v1.7.0) or a timestamp copied in by “tahoe backup” from a local filesystem.

2. You might be confused about whether it is a copy of the file creation time (if “tahoe backup” was run on a
Windows system) or of the last contents-or-metadata change (if “tahoe backup” was run on a different operating
system).

3. You might be confused by the fact that changing the contents of a mutable file in Tahoe doesn’t have any effect
on any links pointing at that file in any directories, although “tahoe backup” sets the link ‘ctime’/’mtime’ to
reflect timestamps about the local file corresponding to the Tahoe file to which the link points.

4. Also, quite apart from Tahoe, you might be confused about the meaning of the “ctime” in UNIX local filesys-
tems, which people sometimes think means file creation time, but which actually means, in UNIX local filesys-
tems, the most recent time that the file contents or the file metadata (such as owner, permission bits, extended

8.5. Programmatic Operations 69

Tahoe-LAFS Documentation, Release 1.x

attributes, etc.) has changed. Note that although “ctime” does not mean file creation time in UNIX, links cre-
ated by a version of Tahoe prior to v1.7.0, and never written by “tahoe backup”, will have ‘ctime’ set to the link
creation time.

8.5.5 Attaching an Existing File or Directory by its read- or write-cap

PUT /uri/$DIRCAP/[SUBDIRS../]CHILDNAME?t=uri

This attaches a child object (either a file or directory) to a specified location in the Tahoe-LAFS file store.
The child object is referenced by its read- or write- cap, as provided in the HTTP request body. This will
create intermediate directories as necessary.

This is similar to a UNIX hardlink: by referencing a previously-uploaded file (or previously-created
directory) instead of uploading/creating a new one, you can create two references to the same object.

The read- or write- cap of the child is provided in the body of the HTTP request, and this same cap is
returned in the response body.

The default behavior is to overwrite any existing object at the same location. To prevent this
(and make the operation return an error instead of overwriting), add a “replace=false” argument, as
“N=uri&replace=false”. With replace=false, this operation will return an HTTP 409 “Conflict” error
if there is already an object at the given location, rather than overwriting the existing object. To allow the
operation to overwrite a file, but return an error when trying to overwrite a directory, use “replace=only-
files” (this behavior is closer to the traditional UNIX “mv” command). Note that “true”, “t”, and “1”
are all synonyms for “True”, and “false”, “f”’, and “0” are synonyms for “False”, and the parameter is
case-insensitive.

Note that this operation does not take its child cap in the form of separate “rw_uri” and “ro_uri” fields.
Therefore, it cannot accept a child cap in a format unknown to the web-API server, unless its URI starts
with “ro.” or “imm.”. This restriction is necessary because the server is not able to attenuate an unknown
write cap to a read cap. Unknown URIs starting with “ro.” or “imm.”, on the other hand, are assumed
to represent read caps. The client should not prefix a write cap with “ro.” or “imm.” and pass it to this
operation, since that would result in granting the cap’s write authority to holders of the directory read cap.

8.5.6 Adding Multiple Files or Directories to a Parent Directory at Once

POST /uri/$DIRCAP/[SUBDIRS..]?t=set_children
POST /uri/S$DIRCAP/[SUBDIRS..]?t=set-children (Tahoe >=v1.6)

This command adds multiple children to a directory in a single operation. It reads the request body and
interprets it as a JSON-encoded description of the child names and read/write-caps that should be added.

The body should be a JSON-encoded dictionary, in the same format as the “children” value returned
by the “GET /uri/$DIRCAP?t=json” operation described above. In this format, each key is a child
names, and the corresponding value is a tuple of (type, childinfo). “type” is ignored, and “childinfo”
is a dictionary that contains “rw_uri”, “ro_uri”, and “metadata” keys. You can take the output of “GET
/uri/$DIRCAP1?t=json” and use it as the input to “POST /uri/$DIRCAP2?t=set_children” to make DIR2
look very much like DIR1 (except for any existing children of DIR2 that were not overwritten, and any

existing “tahoe” metadata keys as described below).

When the set_children request contains a child name that already exists in the target directory,
this command defaults to overwriting that child with the new value (both child cap and metadata,
but if the JSON data does not contain a “metadata” key, the old child’s metadata is preserved).
The command takes a boolean “overwrite=" query argument to control this behavior. If you use
“It=set_children&overwrite=false”, then an attempt to replace an existing child will instead cause an
error.

70 Chapter 8. The Tahoe REST-ful Web API

Tahoe-LAFS Documentation, Release 1.x

Any “tahoe” key in the new child’s “metadata” value is ignored. Any existing “tahoe” metadata is pre-
served. The metadata[“tahoe’] value is reserved for metadata generated by the tahoe node itself. The only
two keys currently placed here are “linkcrtime” and “linkmotime”. For details, see the section above enti-
tled “Getting Information About a File Or Directory (as JSON)”, in the “About the metadata” subsection.

Note that this command was introduced with the name “set_children”, which uses an underscore rather
than a hyphen as other multi-word command names do. The variant with a hyphen is now accepted, but
clients that desire backward compatibility should continue to use “set_children”.

8.5.7 Unlinking a File or Directory

DELETE /uri/$DIRCAP/[SUBDIRS../]CHILDNAME

This removes the given name from its parent directory. CHILDNAME is the name to be removed, and
$DIRCAP/SUBDIRS.. indicates the directory that will be modified.

Note that this does not actually delete the file or directory that the name points to from the tahoe grid —
it only unlinks the named reference from this directory. If there are other names in this directory or in
other directories that point to the resource, then it will remain accessible through those paths. Even if all
names pointing to this object are removed from their parent directories, then someone with possession of
its read-cap can continue to access the object through that cap.

The object will only become completely unreachable once 1: there are no reachable directories that refer-
ence it, and 2: nobody is holding a read- or write- cap to the object. (This behavior is very similar to the
way hardlinks and anonymous files work in traditional UNIX filesystems).

This operation will not modify more than a single directory. Intermediate directories which were implic-
itly created by PUT or POST methods will not be automatically removed by DELETE.

This method returns the file- or directory- cap of the object that was just removed.

8.6 Browser Operations: Human-oriented interfaces

This section describes the HTTP operations that provide support for humans running a web browser. Most of these
operations use HTML forms that use POST to drive the Tahoe-LAFS node. This section is intended for HTML authors
who want to write web pages containing user interfaces for manipulating the Tahoe-LAFS file store.

Note that for all POST operations, the arguments listed can be provided either as URL query arguments or as form
body fields. URL query arguments are separated from the main URL by “?”, and from each other by “&”. For
example, “POST /uri/$DIRCAP?t=upload&mutable=true”. Form body fields are usually specified by using <input
type="hidden”> elements. For clarity, the descriptions below display the most significant arguments as URL query
args.

8.6.1 Viewing a Directory (as HTML)

GET /uri/S$SDIRCAP/[SUBDIRS../]

This returns an HTML page, intended to be displayed to a human by a web browser, which contains
HREF links to all files and directories reachable from this directory. These HREF links do not have a t=
argument, meaning that a human who follows them will get pages also meant for a human. It also contains
forms to upload new files, and to unlink files and directories from their parent directory. Those forms use
POST methods to do their job.

8.6. Browser Operations: Human-oriented interfaces 71

Tahoe-LAFS Documentation, Release 1.x

8.6.2 Viewing/Downloading a File

GET /uri/S$SFILECAP

GET /uri/$DIRCAP/[SUBDIRS../]FILENAME

GET /named/SFILECAP/FILENAME

These will retrieve the contents of the given file. The HTTP response body will contain the sequence of
bytes that make up the file.

The /named/ form is an alternative to /uri/S$FILECAP which makes it easier to get the correct file-
name. The Tahoe server will provide the contents of the given file, with a Content-Type header derived
from the given filename. This form is used to get browsers to use the “Save Link As” feature correctly,
and also helps command-line tools like “wget” and “curl” use the right filename. Note that this form can
only be used with file caps; it is an error to use a directory cap after the /named/ prefix.

URLSs may also use /file/SFILECAP/FILENAME as a synonym for /named/$FILECAP/FILENAME. The
use of “/file/” is deprecated in favor of “/named/” and support for “/file/” will be removed in a future
release of Tahoe-LAFS.

If you use the first form (/uri/$FILECAP) and want the HTTP response to include a useful Content-
Type header, add a “filename=foo” query argument, like “GET /uri/$FILECAP?filename=foo.jpg”. The
bare “GET /uri/$SFILECAP” does not give the Tahoe node enough information to determine a Content-
Type (since LAFS immutable files are merely sequences of bytes, not typed and named file objects).

If the URL has both filename= and “save=true” in the query arguments, then the server to add a “Content-

Disposition: attachment” header, along with a filename= parameter. When a user clicks on such a link,

most browsers will offer to let the user save the file instead of displaying it inline (indeed, most browsers
»

will refuse to display it inline). “true”, “t”, “1”, and other case-insensitive equivalents are all treated the
same.

Character-set handling in URLs and HTTP headers is a dubious art. For maximum compatibility, Tahoe
simply copies the bytes from the filename= argument into the Content-Disposition header’s filename=
parameter, without trying to interpret them in any particular way.

8.6.3 Getting Information About a File Or Directory (as HTML)

GET /uri/SFILECAP?t=info
GET /uri/$DIRCAP/?t=info
GET /uri/S$DIRCAP/[SUBDIRS../]SUBDIR/?t=info
GET /uri/$DIRCAP/[SUBDIRS../]FILENAME?t=info
This returns a human-oriented HTML page with more detail about the selected file or directory object.
This page contains the following items:
* object size
* storage index
* JSON representation
* raw contents (text/plain)
* access caps (URIs): verify-cap, read-cap, write-cap (for mutable objects)
e check/verify/repair form
» deep-check/deep-size/deep-stats/manifest (for directories)
72 Chapter 8. The Tahoe REST-ful Web API

Tahoe-LAFS Documentation, Release 1.x

* replace-contents form (for mutable files)

8.6.4 Creating a Directory

POST /uri?t=mkdir

This creates a new empty directory, but does not attach it to any other directory in the Tahoe-LAFS file
store.

If a “redirect_to_result=true” argument is provided, then the HTTP response will cause the web browser
to be redirected to a /uri/$DIRCAP page that gives access to the newly-created directory. If you bookmark
this page, you’ll be able to get back to the directory again in the future. This is the recommended way to
start working with a Tahoe server: create a new unlinked directory (using redirect_to_result=true), then
bookmark the resulting /uri/$DIRCAP page. There is a “create directory” button on the Welcome page to
invoke this action.

This accepts a format= argument in the query string. Refer to the documentation of the PUT /uri?t=mkdir
operation in Creating A New Directory for information on the behavior of the format= argument.

If “redirect_to_result=true” is not provided (or is given a value of “false”), then the HTTP response body
will simply be the write-cap of the new directory.

POST /uri/$DIRCAP/[SUBDIRS../]?t=mkdir&name=CHILDNAME

This creates a new empty directory as a child of the designated SUBDIR. This will create additional
intermediate directories as necessary.

This accepts a format= argument in the query string. Refer to the documentation of POST
/uri/$DIRCAP/[SUBDIRS../]?t=mkdir&name=CHILDNAME in Creating a New Directory for informa-
tion on the behavior of the format= argument.

If a “when_done=URL” argument is provided, the HTTP response will cause the web browser to redirect
to the given URL. This provides a convenient way to return the browser to the directory that was just
modified. Without a when_done= argument, the HTTP response will simply contain the write-cap of the
directory that was just created.

8.6.5 Uploading a File

POST /uri?t=upload

This uploads a file, and produces a file-cap for the contents, but does not attach the file to any directory in
the Tahoe-LAFS file store. That is, no directories will be modified by this operation.

The file must be provided as the “file” field of an HTML encoded form body, produced in response to an
HTML form like this:

<form action="/uri" method="POST" enctype="multipart/form-data">
<input type="hidden" name="t" value="upload" />

<input type="file" name="file" />

<input type="submit" value="Upload Unlinked" />

</form>

If a “when_done=URL” argument is provided, the response body will cause the browser to redirect to
the given URL. If the when_done= URL has the string “%(uri)s” in it, that string will be replaced by a
URL-escaped form of the newly created file-cap. (Note that without this substitution, there is no way to
access the file that was just uploaded).

8.6. Browser Operations: Human-oriented interfaces 73

Tahoe-LAFS Documentation, Release 1.x

The default (in the absence of when_done=) is to return an HTML page that describes the results of the
upload. This page will contain information about which storage servers were used for the upload, how
long each operation took, etc.

This accepts format= and mutable=true query string arguments. Refer to Writing/Uploading a File for
information on the behavior of format= and mutable=true.

POST /uri/$DIRCAP/[SUBDIRS../]?t=upload

This uploads a file, and attaches it as a new child of the given directory, which must be mutable. The file
must be provided as the “file” field of an HTML-encoded form body, produced in response to an HTML
form like this:

<form action="." method="POST" enctype="multipart/form-data">
<input type="hidden" name="t" value="upload" />

<input type="file" name="file" />

<input type="submit" wvalue="Upload" />

</form>

A “name="" argument can be provided to specify the new child’s name, otherwise it will be taken from the
“filename” field of the upload form (most web browsers will copy the last component of the original file’s
pathname into this field). To avoid confusion, name= is not allowed to contain a slash.

If there is already a child with that name, and it is a mutable file, then its contents are replaced with the
data being uploaded. If it is not a mutable file, the default behavior is to remove the existing child before
creating a new one. To prevent this (and make the operation return an error instead of overwriting the old
child), add a “replace=false” argument, as “?t=upload&replace=false”. With replace=false, this operation
will return an HTTP 409 “Conflict” error if there is already an object at the given location, rather than

overwriting the existing object. Note that “true”, “t”, and “1” are all synonyms for “True”, and “false”,
“f”, and “0” are synonyms for “False”. the parameter is case-insensitive.

This will create additional intermediate directories as necessary, although since it is expected to be trig-
gered by a form that was retrieved by “GET /uri/$DIRCAP/[SUBDIRS../]”, it is likely that the parent
directory will already exist.

This accepts format= and mutable=true query string arguments. Refer to Writing/Uploading a File for
information on the behavior of format= and mutable=true.

If a “when_done=URL” argument is provided, the HTTP response will cause the web browser to redirect
to the given URL. This provides a convenient way to return the browser to the directory that was just
modified. Without a when_done= argument, the HTTP response will simply contain the file-cap of the
file that was just uploaded (a write-cap for mutable files, or a read-cap for immutable files).

POST /uri/$DIRCAP/[SUBDIRS../]FILENAME?t=upload

This also uploads a file and attaches it as a new child of the given directory, which must be mutable. It is a
slight variant of the previous operation, as the URL refers to the target file rather than the parent directory.
It is otherwise identical: this accepts mutable= and when_done= arguments too.

POST /uri/SFILECAP?t=upload

This modifies the contents of an existing mutable file in-place. An error is signalled if SFILECAP does
not refer to a mutable file. It behaves just like the “PUT /uri/$FILECAP” form, but uses a POST for the
benefit of HTML forms in a web browser.

74

Chapter 8. The Tahoe REST-ful Web API

Tahoe-LAFS Documentation, Release 1.x

8.6.6 Attaching An Existing File Or Directory (by URI)

POST /uri/$DIRCAP/[SUBDIRS../]?t=uri&name=CHILDNAME&uri=CHILDCAP

This attaches a given read- or write- cap “CHILDCAP” to the designated directory, with a specified child
name. This behaves much like the PUT t=uri operation, and is a lot like a UNIX hardlink. It is subject to
the same restrictions as that operation on the use of cap formats unknown to the web-API server.

This will create additional intermediate directories as necessary, although since it is expected to be trig-
gered by a form that was retrieved by “GET /uri/$DIRCAP/[SUBDIRS../]”, it is likely that the parent
directory will already exist.

This accepts the same replace= argument as POST t=upload.

8.6.7 Unlinking a Child

POST /uri/$DIRCAP/[SUBDIRS../]?t=delete&name=CHILDNAME
POST /uri/$DIRCAP/[SUBDIRS../]?t=unlink&name=CHILDNAME (Tahoe >=v1.9)

This instructs the node to remove a child object (file or subdirectory) from the given directory, which must
be mutable. Note that the entire subtree is unlinked from the parent. Unlike deleting a subdirectory in a
UNIX local filesystem, the subtree need not be empty; if it isn’t, then other references into the subtree will
see that the child subdirectories are not modified by this operation. Only the link from the given directory
to its child is severed.

In Tahoe-LAFS v1.9.0 and later, t=unlink can be used as a synonym for t=delete. If interoperability with
older web-API servers is required, t=delete should be used.

8.6.8 Renaming a Child

POST /uri/S$DIRCAP/[SUBDIRS../]?t=rename&from _name=0LD&to_name=NEW

This instructs the node to rename a child of the given directory, which must be mutable. This has a similar
effect to removing the child, then adding the same child-cap under the new name, except that it preserves
metadata. This operation cannot move the child to a different directory.

The default behavior is to overwrite any existing link at the destination (replace=true). To prevent this
(and make the operation return an error instead of overwriting), add a “replace=false” argument. With
replace=false, this operation will return an HTTP 409 “Conflict” error if the destination is not the same
link as the source and there is already a link at the destination, rather than overwriting the existing link.
To allow the operation to overwrite a link to a file, but return an HTTP 409 error when trying to overwrite
a link to a directory, use “replace=only-files” (this behavior is closer to the traditional UNIX “mv”’ com-
mand). Note that “true”, “t”, and “1” are all synonyms for “True”; “false”, “f”, and “0” are synonyms for
“False”; and the parameter is case-insensitive.

8.6. Browser Operations: Human-oriented interfaces 75

Tahoe-LAFS Documentation, Release 1.x

8.6.9 Relinking (“Moving”) a Child

POST /uri/$DIRCAP/[SUBDIRS../]?t=relink&from name=OLD&to_dir=$NEWDIRCAP/[NEWSUBDIRS../]&to
[&replace=true|false|only-files] (Tahoe >=v1.10)

This instructs the node to move a child of the given source directory, into a different directory and/or to a
different name. The command is named relink because what it does is add a new link to the child from the
new location, then remove the old link. Nothing is actually “moved”: the child is still reachable through any
path from which it was formerly reachable, and the storage space occupied by its ciphertext is not affected.

The source and destination directories must be writeable. If to_dir is not present, the child link is renamed
within the same directory. If to_name is not present then it defaults to from_name. If the destination link
(directory and name) is the same as the source link, the operation has no effect.

Metadata from the source directory entry is preserved. Multiple levels of descent in the source and destination
paths are supported.

This operation will return an HTTP 404 “Not Found” error if SDIRCAP/ [SUBDIRS. . /], the child being
moved, or the destination directory does not exist. It will return an HTTP 400 “Bad Request” error if any entry
in the source or destination paths is not a directory.

The default behavior is to overwrite any existing link at the destination (replace=true). To prevent this (and make
the operation return an error instead of overwriting), add a “replace=false” argument. With replace=false, this
operation will return an HTTP 409 “Conflict” error if the destination is not the same link as the source and there
is already a link at the destination, rather than overwriting the existing link. To allow the operation to overwrite
a link to a file, but return an HTTP 409 error when trying to overwrite a link to a directory, use “replace=only-

files” (this behavior is closer to the traditional UNIX “mv” command). Note that “true”, “t”, and “1” are all
synonyms for “True”; “false”, “f”, and “0” are synonyms for “False”; and the parameter is case-insensitive.

When relinking into a different directory, for safety, the child link is not removed from the old directory until it
has been successfully added to the new directory. This implies that in case of a crash or failure, the link to the
child will not be lost, but it could be linked at both the old and new locations.

The source link should not be the same as any link (directory and child name) in the to_dir path. This
restriction is not enforced, but it may be enforced in a future version. If it were violated then the result would be
to create a cycle in the directory structure that is not necessarily reachable from the root of the destination path
(SNEWDIRCAP), which could result in data loss, as described in ticket #943.

8.6.10 Other Utilities

GET /uri?uri=$CAP

This causes a redirect to /uri/$CAP, and retains any additional query arguments (like filename= or save=).
This is for the convenience of web forms which allow the user to paste in a read- or write- cap (obtained
through some out-of-band channel, like IM or email).

Note that this form merely redirects to the specific file or directory indicated by the $SCAP: unlike the GET
/uri/$DIRCAP form, you cannot traverse to children by appending additional path segments to the URL.

GET /uri/S$DIRCAP/[SUBDIRS../]?t=rename-form&name=$SCHILDNAME

This provides a useful facility to browser-based user interfaces. It returns a page containing a form target-
ting the “POST $DIRCAP t=rename” functionality described above, with the provided $CHILDNAME
present in the ‘from_name’ field of that form. Le. this presents a form offering to rename SCHILDNAME,
requesting the new name, and submitting POST rename. This same URL format can also be used with
“move-form” with the expected results.

GET /uri/$DIRCAP/[SUBDIRS../]CHILDNAME?t=uri

76 Chapter 8. The Tahoe REST-ful Web API

https://tahoe-lafs.org/trac/tahoe-lafs/ticket/943

Tahoe-LAFS Documentation, Release 1.x

This returns the file- or directory- cap for the specified object.

GET /uri/S$SDIRCAP/[SUBDIRS../]CHILDNAME?t=readonly-uri

This returns a read-only file- or directory- cap for the specified object. If the object is an immutable file,

this will return the same value as t=uri.

8.6.11 Debugging and Testing Features

These URLs are less-likely to be helpful to the casual Tahoe user, and are mainly intended for developers.

POST S$URL?t=check

This triggers the FileChecker to determine the current “health” of the given file or directory, by counting
how many shares are available. The page that is returned will display the results. This can be used as a

“show me detailed information about this file” page.

If a verify=true argument is provided, the node will perform a more intensive check, downloading and

verifying every single bit of every share.

If an add-lease=true argument is provided, the node will also add (or renew) a lease to every share it
encounters. Each lease will keep the share alive for a certain period of time (one month by default). Once

the last lease expires or is explicitly cancelled, the storage server is allowed to delete the share.

If an output=JSON argument is provided, the response will be machine-readable JSON instead of human-

oriented HTML. The data is a dictionary with the following keys:

storage-index: a base32-encoded string with the objects's storage index,
or an empty string for LIT files
summary: a string, with a one-line summary of the stats of the file
results: a dictionary that describes the state of the file. For LIT files,
this dictionary has only the 'healthy' key, which will always be
True. For distributed files, this dictionary has the following
keys:
count—happiness: the servers-of-happiness level of the file, as
defined in doc/specifications/servers—-of-happiness.
count-shares—-good: the number of good shares that were found
count-shares-needed: 'k', the number of shares required for recovery
count-shares—expected: 'N', the number of total shares generated
count—good-share-hosts: the number of distinct storage servers with
good shares. Note that a high value does not
necessarily imply good share distribution,
because some of these servers may only hold
duplicate shares.
count-wrong-shares: for mutable files, the number of shares for
versions other than the 'best' one (highest
sequence number, highest roothash). These are
either old, or created by an uncoordinated or
not fully successful write.
count-recoverable-versions: for mutable files, the number of
recoverable versions of the file. For
a healthy file, this will equal 1.
count-unrecoverable-versions: for mutable files, the number of
unrecoverable versions of the file.

For a healthy file, this will be O.
count—-corrupt-shares: the number of shares with integrity failures
list-corrupt-shares: a list of "share locators", one for each share

that was found to be corrupt. Each share locator
is a list of (serverid, storage_index, sharenum).

(continues on next page)

8.6. Browser Operations: Human-oriented interfaces

77

Tahoe-LAFS Documentation, Release 1.x

(continued from previous page)

servers-responding: list of base32-encoded storage server identifiers,
one for each server which responded to the share
query .
healthy: (bool) True if the file is completely healthy, False otherwise.
Healthy files have at least N good shares. Overlapping shares
do not currently cause a file to be marked unhealthy. If there
are at least N good shares, then corrupt shares do not cause the
file to be marked unhealthy, although the corrupt shares will be
listed in the results (list-corrupt-shares) and should be manually
removed to wasting time in subsequent downloads (as the
downloader rediscovers the corruption and uses alternate shares).
Future compatibility: the meaning of this field may change to
reflect whether the servers-of-happiness criterion is met
(see ticket #614).
sharemap: dict mapping share identifier to list of serverids
(base32-encoded strings). This indicates which servers are
holding which shares. For immutable files, the shareid is
an integer (the share number, from 0 to N-1). For
immutable files, it is a string of the form
'seq¢d-2s-sh%d', containing the sequence number, the
roothash, and the share number.

Before Tahoe-LAFS vl1.11, the results dictionary also had a needs-rebalancing field, but that has been
removed since it was computed incorrectly.

POST $URL?t=start-deep-check (must add &ophandle=XYZ)

This initiates a recursive walk of all files and directories reachable from the target, performing a check on
each one just like t=check. The result page will contain a summary of the results, including details on any
file/directory that was not fully healthy.

t=start-deep-check can only be invoked on a directory. An error (400 BAD_REQUEST) will be signalled
if it is invoked on a file. The recursive walker will deal with loops safely.

This accepts the same verify= and add-lease= arguments as t=check.

Since this operation can take a long time (perhaps a second per object), the ophandle= argument is required
(see “Slow Operations, Progress, and Cancelling” above). The response to this POST will be a redirect
to the corresponding /operations/SHANDLE page (with output=HTML or output=JSON to match the
output= argument given to the POST). The deep-check operation will continue to run in the background,
and the /operations page should be used to find out when the operation is done.

Detailed check results for non-healthy files and directories will be available under /opera-
tions/SHANDLE/$STORAGEINDEX, and the HTML status will contain links to these detailed results.

The HTML /operations/SHANDLE page for incomplete operations will contain a meta-refresh tag, set
to 60 seconds, so that a browser which uses deep-check will automatically poll until the operation has
completed.

The JSON page (/options/SHANDLE?output=JSON) will contain a machine-readable JSON dictionary
with the following keys:

finished: a boolean, True if the operation is complete, else False. Some
of the remaining keys may not be present until the operation
is complete.
root-storage-index: a base32-encoded string with the storage index of the
starting point of the deep-check operation
count-objects-checked: count of how many objects were checked. Note that

(continues on next page)

78 Chapter 8. The Tahoe REST-ful Web API

Tahoe-LAFS Documentation, Release 1.x

(continued from previous page)

non-distributed objects (i.e. small immutable LIT
files) are not checked, since for these objects,
the data is contained entirely in the URI.
count-objects-healthy: how many of those objects were completely healthy
count-objects-unhealthy: how many were damaged in some way
count-corrupt-shares: how many shares were found to have corruption,
summed over all objects examined
list-corrupt-shares: a list of "share identifiers", one for each share
that was found to be corrupt. Each share identifier
is a list of (serverid, storage_index, sharenum).
list-unhealthy-files: a list of (pathname, check-results) tuples, for
each file that was not fully healthy. 'pathname' is
a list of strings (which can be joined by "/"
characters to turn it into a single string),
relative to the directory on which deep-check was
invoked. The 'check-results' field is the same as
that returned by t=check&output=JSON, described
above.
stats: a dictionary with the same keys as the t=start-deep-stats command
(described below)

POST S$URL?t=stream-deep-check

This initiates a recursive walk of all files and directories reachable from the target, performing a check
on each one just like t=check. For each unique object (duplicates are skipped), a single line of JSON is
emitted to the HTTP response channel (or an error indication, see below). When the walk is complete, a
final line of JSON is emitted which contains the accumulated file-size/count “deep-stats” data.

This command takes the same arguments as t=start-deep-check.

A CLI tool can split the response stream on newlines into “response units”, and parse each response unit
as JSON. Each such parsed unit will be a dictionary, and will contain at least the “type” key: a string, one
of “file”, “directory”, or “stats”.

For all units that have a type of “file” or “directory”, the dictionary will contain the following keys:

"path": a list of strings, with the path that is traversed to reach the
object

"cap": a write-cap URI for the file or directory, if available, else a
read-cap URI

"verifycap": a verify-cap URI for the file or directory

"repaircap": an URI for the weakest cap that can still be used to repair
the object

"storage-index": a base32 storage index for the object

"check-results": a copy of the dictionary which would be returned by

t=checké&output=json, with three top-level keys:
"storage-index", "summary", and "results", and a variety
of counts and sharemaps in the "results" value.

Note that non-distributed files (i.e. LIT files) will have values of None for verifycap, repaircap, and
storage-index, since these files can neither be verified nor repaired, and are not stored on the storage
servers. Likewise the check-results dictionary will be limited: an empty string for storage-index, and a
results dictionary with only the “healthy” key.

The last unit in the stream will have a type of “stats”, and will contain the keys described in the “start-
deep-stats” operation, below.

If any errors occur during the traversal (specifically if a directory is unrecoverable, such that further
traversal is not possible), an error indication is written to the response body, instead of the usual line

8.6. Browser Operations: Human-oriented interfaces 79

Tahoe-LAFS Documentation, Release 1.x

of JSON. This error indication line will begin with the string “ERROR:” (in all caps), and contain a
summary of the error on the rest of the line. The remaining lines of the response body will be a python
exception. The client application should look for the ERROR: and stop processing JSON as soon as it
is seen. Note that neither a file being unrecoverable nor a directory merely being unhealthy will cause
traversal to stop. The line just before the ERROR: will describe the directory that was untraversable, since
the unit is emitted to the HTTP response body before the child is traversed.

POST S$URL?t=checké&repair=true

This performs a health check of the given file or directory, and if the checker determines that the object is
not healthy (some shares are missing or corrupted), it will perform a “repair”. During repair, any missing
shares will be regenerated and uploaded to new servers.

This accepts the same verify=true and add-lease= arguments as t=check. When an output=JSON argument
is provided, the machine-readable JSON response will contain the following keys:

storage-index: a base32-encoded string with the objects's storage index,
or an empty string for LIT files
repair—-attempted: (bool) True if repair was attempted
repair-successful: (bool) True if repair was attempted and the file was
fully healthy afterwards. False if no repair was
attempted, or if a repair attempt failed.
pre-repair-results: a dictionary that describes the state of the file
before any repair was performed. This contains exactly
the same keys as the 'results' value of the t=check
response, described above.
post-repair-results: a dictionary that describes the state of the file
after any repair was performed. If no repair was
performed, post-repair-results and pre-repair-results
will be the same. This contains exactly the same keys
as the 'results' value of the t=check response,
described above.

POST $URL?t=start-deep-check&repair=true (mustadd &ophandle=XYZ)
This triggers a recursive walk of all files and directories, performing a t=check&repair=true on each one.

Like t=start-deep-check without the repair= argument, this can only be invoked on a directory. An error
(400 BAD_REQUEST) will be signalled if it is invoked on a file. The recursive walker will deal with
loops safely.

This accepts the same verify= and add-lease= arguments as t=start-deep-check. It uses the same ophan-
dle= mechanism as start-deep-check. When an output=JSON argument is provided, the response will
contain the following keys:

finished: (bool) True if the operation has completed, else False

root-storage-index: a base32-encoded string with the storage index of the
starting point of the deep-check operation

count-objects—-checked: count of how many objects were checked

count-objects-healthy-pre-repair: how many of those objects were completely
healthy, before any repair
count-objects-unhealthy-pre-repair: how many were damaged in some way
count-objects-healthy-post-repair: how many of those objects were completely
healthy, after any repair
count-objects-unhealthy-post-repair: how many were damaged in some way

count-repairs—attempted: repairs were attempted on this many objects.
count-repairs-successful: how many repairs resulted in healthy objects

(continues on next page)

80 Chapter 8. The Tahoe REST-ful Web API

Tahoe-LAFS Documentation, Release 1.x

(continued from previous page)

count-repairs-unsuccessful: how many repairs resulted did not results in
completely healthy objects
count-corrupt-shares-pre-repair: how many shares were found to have
corruption, summed over all objects
examined, before any repair
count-corrupt-shares-post-repair: how many shares were found to have
corruption, summed over all objects
examined, after any repair
list—-corrupt-shares: a list of "share identifiers", one for each share
that was found to be corrupt (before any repair).
Each share identifier is a list of (serverid,
storage_index, sharenum) .
list-remaining-corrupt-shares: like list-corrupt-shares, but mutable shares
that were successfully repaired are not
included. These are shares that need
manual processing. Since immutable shares
cannot be modified by clients, all corruption
in immutable shares will be listed here.
list-unhealthy-files: a list of (pathname, check-results) tuples, for
each file that was not fully healthy. 'pathname' is
relative to the directory on which deep-check was
invoked. The 'check-results' field is the same as
that returned by t=checké&repair=true&output=JSON,
described above.
stats: a dictionary with the same keys as the t=start-deep-stats command
(described below)

POST S$URL?t=stream-deep-check&repair=true

Th